symbolics™

3600 Technical Summary

This document corresponds to the Symbolics 3600 system as of
February 1983.

This document was prepared by the Documentation and Education Services
Department of Symbolics, Inc.

Principal writer: Curtis B. Roads

The information in this document is subject to change without notice and should
not be construed as a commitment by Symbolics, Inc. Symbolics, Inc. assumes no
responsibility for any errors that may appear in this document.

Symbolics, Inc. makes no representation that the interconnection of its products in
the manner described herein will not infringe on existing or future patent rights, nor
do the descriptions contained herein imply the granting of a license to make, use,
or sell equipment constructed in accordance with its description.

The terms and conditions governing the sale of Symbolics hardware products and
the licensing of Symbolics software consist solely of those set forth in the written
contracts between Symbolics and its customers. No representation or other affir-
mation of fact contained in this document, including but not limited to statements
regarding capacity, response-time performance, suitability for use or performance
of products described herein, shall be deemed to be a warranty by Symbolics for
any purpose, or give rise to any liability of Symbolics whatsoever.

Symbolics software described in this document is furnished only under license,
and may be used only in accordance with the terms of such license. Title to, and
ownership of, such software shall at all times remain in Symbolics, Inc.

Symbolics, Inc. assumes no responsibility for the use or reliability of its software on
equipment that is not supplied or maintained by Symbolics, Inc.

Symbolics is a trademark of Symbolics, Inc., Cambridge, Massachusetts.
MACSYMA is a trademark of Symbolics, Inc., Cambridge, Massachusetts.
DEC, Digital, TOPS-20, VAX, and VMS are trademarks of Digital Equipment
Corporation.

TENEX is a registered trademark of Bolt Beranek and Newman Inc.

UNIX is a trademark of Bell Laboratories, inc.

Copyright © 1983, Symbolics, Inc. of Cambridge, Massachusetts.

All rights reserved. Printed in USA.

This document may not be reproduced in whole or in part without the prior written
consent of Symbolics, Inc.

Table of Contents

Preface

3600 Overview

History of the Lisp Machine Concept
3600 Software Overview
Why Lisp?

Zetalisp

The Lisp Environment
Network Software

3600 Hardware Overview
The 3600 System

The 3600 Processor

3600 Networks

3600 Peripherals

The User Interface
Notation Conventions

3600 Software: Development Tools

The Zmacs Editor

Manipulating Text

Editing Lisp Programs

Interacting with the Lisp environment
Using the Mouse

Bit-mapped Display Editing

Zmacs Commands

Customizing the Editing Environment
Other Program Development Tools
The Inspector

The Display Debugger

Peek: Examining the State of the System
The File System Editor: FSEdit

The Font Editor: FED

Tools for Managing Large Systems

Defining a System: Selective Modification and Recompilation

Patching Bugs

3600 Software: Languages

The Zetalisp Language
Data Types

Program Control Mechanisms
Function Calling

Multiple Values

Input/Output Mechanisms
Predefined Functions

— b b
NOoOOwo~NN~NoOoOOUuOh W

i

Packages for Independent Namespaces 36
Interactive Debugging Tools 37
Flavor System: Language features to support object- 38
oriented programming style

Signalling and Handling Conditions 44
Macros: Extending the Language 45
Access to System Subprimitives 46
Common Lisp Compatibility 46
Other Supported Languages and Systems 47
Interlisp Compatibility Package 47
FORTRAN 77 Tool Kit 49
LIL 50
MACSYMA 52
3600 Software: Environment 55
The Window System: The User’s Perspective 55
A Hierarchical Window System 56
Menus and Choices 56
The Mouse Documentation Line 57
The Status Line 58
Multiple Display Screens 58
The Window System: The Programmer’s Perspective 59
Primitive Graphics Operations 59
Choice Facilities 59
Scrolling 61
Creating New Windows with Mixin Flavors 62
File Systems 62
The Lisp Machine File System 62
File System Reliability 63
Remote File Systems 64
Virtual Memory: The Programmer’s Perspective 65
Scheduling Processes 66
3600 Software: Network Communications 69
Electronic Mail: Zmail and Converse 69
Reading and Answering Mail 69
Selecting and Filtering Mail 71
Customizing Zmail 71
The Converse Utility for Interactive Messages 73
Network Software 73
Ethernet Support 73
Remote login 75
Symbolics Auto-dial Feature 75
3600 Hardware: A New Lisp Machine 77
3600 Hardware: Processor Architecture 79
Tagged Architecture 79
Run-time Data-Type Checking 79
Word Formats and the Cdr-coding Feature 80
Cdr-coding for List Compaction 81
Hardware-supported Data Types 82
Stack Mechanisms 83
Hardware Support for Stack Groups 84
3600 Instruction Set 85
Instruction Formats 85
The Instruction-Execution Engine 88
Example of Instruction Execution: ADD 88
The Instruction Fetch Unit 89
Microcode and Microtasks 89
Microtasking 89

3600 Hardware: Organization of Memory 93
Instruction Cache 93
Stack Buffers 93
Hardware Pointers 93
Physical Memory 94
Virtual Memory 94
Virtual Memory Operation 94
Translating a Virtual Address into a Physical Address 96
Garbage-Collection Mechanisms 98
Hardware-assisted Garbage Collection 98
The L Bus 100
Biock-Mode Operation 101
Direct Memory Access (DMA) Operation 101
The L Bus Clock 103
3600 Hardware: l/O Systems 105
The FEP and MULTIBUS 105
Serial Lines 105
MULTIBUS Interrupts 106
Bootstrap Loading the 3600 106
Hardware Error Handling 106
Running Diagnostics from the FEP 107
The Spy bus 107
The FEP File System 108
The NanoFEP 108
The 3600 Console 108
Digital Audio Output System 109
Disk Controller 110
3600 Hardware: Packaging and Specifications 113
Processor and Console Cabinets 113
Electrical Specifications 114
Environmental Specifications and Requirements 115
Physical Dimensions and Weights 115
3600 Hardware: Peripherals 117
Disk Systems 117
Ethernet Interface 117
Color Display System 118
Color Memory Addressing Modes 120
Color Display System Options 121
Tape Drives 124
Laser Graphics Printer 124
3600 Technical Communication 127
Glossary 131
Index 139

i

List of Figures and Tables

iv

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure 10.
Figure 11.
Figure 12.

Figure 13.
Figure 14.
Figure 15.
Figure 16.

Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.

Figure 23.

Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.

Figure 34.
Figure 35.
Figure 36.

Table 1.

N oohp=

Block diagram of a 3600 network.

The 3600 console display, keyboard, and mouse.

An Inspector window.

A Display Debugger window.

A Peek window, showing the state of current windows.
A File System Editor window, with a momentary menu
of directory operations.

The font editor screen.

A package hierarchy.

Flavor combination (1) and instantiation (2).
Message-passing operation. Fiavor instance x sends
amessage to flavor instance y.

The inheritance network of the flavor tv:menu built by
combining many component flavors.

A MACSYMA window in use, example of the

PLOT3D function.

Example of a momentary menu.

Example of a choose-variable-values menu.

The mouse documentation line and the status line.
The double-arrow symbol indicates that scrolling
mode is in effect. The thickened line is a proportional
representation showing the current screen’s size and
position in the entire buffer.

Kinds of file systems.

Zmail input and output diagram.

Zmail window in a mail-reading state.

3600 word formats.

Representation of the list (A B C) in normal form

uses six words. (Note that the type field is not shown
in this diagram.)

Representation of the list (A B C) in compacted
(cdr-coded) form uses three words. (Note that the
type field is not shown in this diagram.)

Instruction pipeline path, showing the relation between
the IFU and the rest of the processor.

3600 virtual memory mechanisms.

View of the L bus backplane.

L bus timing.

Basic digital audio output system.

Front view of the board layout on the backplane. An
additional cabinet is provided for memory expansion
beyond that shown here.

The 169-Mbyte disk drive.

The 474-Mbyte disk drive.

Color memory topology in the Plane addressing mode.
Color memory topology in the Pixel addressing mode.
Color memory topology in the Packed addressing
mode.

Color memory topology in the Fill addressing mode.
The TD20 cartridge tape drive.

The TD80 streaming tape drive.

Instruction Categories. (Note: The instructions listed
here do not constitute the entire instruction set.)

83

90

95
100
102
111
114

118
119
122
122
123

123
124
125

86

Preface

Symbolics 3600 Technical Summary Preface

This technical summary is a detailed introduction to all aspects
of the Symbolics 3600 system. It is addressed to technical
managers, programmers, and computer system specialists who are
already familiar with computer software, hardware, and
terminology.

The text begins by outlining the history of the Lisp Machine
concept, its development at the Massachusetts Institute of
Technology (M.LT.), and its evolution at Symbolics, Inc. Next
are overviews of the 3600 software and hardware. For a general
description of the 3600 system, read only these overviews.

After the overviews, this document is divided into four software
chapters:

A 3600 Software: Development Tools

A 3600 Software: Languages

A 3600 Software: Environment

R 3600 Software: Communications

These are followed by five hardware chapters:
A 3600 Hardware: Processor Architecture

A 3600 Hardware: Organization of Memory

2 3600 Hardware: I/O Systems

A 3600 Hardware: Packaging and Specifications
A 3600 Hardware: Peripherals

A chapter on Technical Communication completes the
presentation.

Each chapter contains detailed summaries of the features of the
3600, along with technical details of how the features work.

If you are uncertain about the meaning of a particular term,
consult the Glossary provided at the end of this volume. Use the
Index to find the meaning of a particular term as we use it in
the context of the 3600 system.

Ipatent applied for.

Symbolics 3600 Technical Summary Overview

3600 Overview

This chapter outlines the history of the Lisp Machine concept
and discusses the main features of the 3600 software and
hardware.

The Symbolics 3600 is a 36-bit single-user computer designed for
high-productivity software development and for the execution of
large symbolic programs. The 3600 processor gives the user all
the computational power associated with supermini computers in
a dedicated workstation. The tagged architecture of the
processor allows run-time data-type checking in hardware,
eliminating data declarations in programs.

The system software constitutes a large-scale programming
environment, with over a half-million lines of system code
accessible to the user. Object-oriented programming techniques
are used throughout the 3600 system to provide a reliable and
extensible integrated environment without the usual division
between an operating system and programming languages.

Printed documentation is provided for users at all levels of
experience. Conceptual documents present an overview of a
topic, procedural guides show users how to accomplish specific
tasks, and reference manuals describe the features of the system
in detail. In addition, online documentation is available
throughout the 3600 software environment.

Typical applications of the 3600 include research and
development in the following areas:

A Artificial Intelligence (AI)

A Computer-aided Design (CAD)

A Expert Systems

A Simulation

A Signal Processing

A Education

A Physics

A Graphical Animation

A Communications

A Very-Large-Scale-Integration (VLSI) Circuit Design
A Speech Recognition and Understanding

A Pattern Recognition and Image Understanding

A Natural Language Understanding

Symbolics 3600 Technical Summary Overview

History of the Lisp Machine Concept
In recent years, the economics of computer hardware and the
computational demands made by modern software have
converged to make personal, networked computers more
attractive than timeshared systems. In response to this changing
situation, researchers at the M.LT. Artificial Intelligence
Laboratory initiated the Lisp Machine project in 1974. The
project was aimed at developing a state-of-the-art personal
computer that would support programmers developing large and
complex software systems. An important decision was made
early in the design process: for consistency throughout the
software environment, all of the system code would be written in
a single language — Lisp.

The Lisp Machine concept rests on the following tenets:

A Dedicated personal computer and console

A Fast Lisp execution

A Tagged architecture (run-time data-type checking and
generic instructions)

A Virtual memory

x Integrated local area network

A Interactive, high-resolution, bit-mapped graphics

As the first stage of the project, a simulator for the Lisp
Machine was written on a timeshared computer system. This
enabled software development to proceed while the hardware was
being debugged. Software development for Lisp Machines has
been ongoing since 1975. The first-generation Lisp Machine, the
CONS, was running in 1976. A second-generation Lisp Machine,
called the CADR, incorporated some hardware improvements. It
was introduced in 1978, replacing the CONS.

In 1980, Symbolics, Inc., was formed with the purpose of
combining past experience with the latest technology to develop a
new line of Lisp-based computer systems and related products.
Symbolics introduced a third-generation Lisp Machine, the LM-2,
in 1981. The LM-2 is basically an M.LT. CADR, repackaged for
higher reliability and easier servicing. From 1979 to 1982,
research continued on a much more powerful and cost-effective
system. This fourth-generation Lisp Machine, known as the

Symbolics 3600 Technical Summary Overview

3600, is based on acompletely new hardware design, yet it
retains software compatibility with the LM-2.

3600 Software Overview
This section describes the advantages of Lisp, specific features of
Zetalisp (the dialect of Lisp currently used on the 3600), the Lisp
Machine programming environment, and the network software.

Why Lisp?

Lisp was designed for symbol processing. Symbolic processing

includes computation with symbols and relationships as well as

numbers, characters, and bits. Most major artificial intelligence

systems are written in Lisp, including programs for expert

problem-solving, common-sense reasoning, learning, natural

language processing, education, speech, intelligent signal

processing, and vision. Lisp has many features which make it

useful for symbol processing.

A Lisp is interactive.

A Lisp functions and data have the same form; programs can
generate other programs and then pass control to them.

A The Lisp environment provides powerful editing and
debugging tools.

A Lisp is easy to learn; the parenthesis notation makes Lisp
syntax uniform.

X Lisp is extensible.

In recent years, highly efficient compilers and Lisp-oriented

processors have been developed which have dispelled the earlier

notion of Lisp as a slow language. Optimized code generators for

Lisp have enabled its use as a systems programming and

implementation language. For example, all of the system code in

the 3600 is written directly in Lisp. Applications in symbolic

mathematics (MACSYMA), document processing, and

computer-aided design have also been developed exclusively in

Lisp.

Zetalisp

Zetalisp is a Lisp dialect developed specifically for the Lisp
Machine. Zetalisp is closely related to the Maclisp dialect
developed in the 1970s. It is largely compatible with Maclisp,
while introducing many new features and improvements. These
include:

Symbolics 3600 Technical Summary Overview

A A full range of data types, including many numerical types,
lists, strings, arrays, planes, and user-defined structures.

A Modern control constructs, including a very general loop
iteration facility, asynchronous nonlocal exits, coroutines, and
processes.

A Flexible function calling and multiple-value returns.

A Stream-oriented input and output.

» The Flavor System for object-oriented programming with
message-passing.

A Macros for extending the Zetalisp syntax.

» Predefined functions which support such operations as sorts,
hash tables, linear equations, and matrix operations.

A Multiple name spaces (packages).

Symbolics is committed to compatibility with the
soon-to-be-released Common Lisp specification. Currently under
development, Symbolics Common Lisp is a compatible superset of
the Common Lisp standard.

Note: In the rest of this document, "Zetalisp” and "Lisp" are used
synonymously.

The Lisp Environment

The 3600 provides an extensive interactive programming

environment all written in Lisp. Over a half-million lines of code

are provided with the basic system (in both source and compiled

form). This includes over 10,000 compiled functions to which

users have full access. The software incorporates the following

components:

A Flavor-based window system

2 Flavor-based choice facilities, including many types of menus

A A real-time text editor with many advanced features,
including interpretation and compilation of Lisp forms

A Incremental compilers

A Dynamic loading and linking

A A flexible display-oriented debugging system

A Flavor-based condition system for error-handling

2 Ethernet local area network communications

2 Interlisp Compatibility Package

Software options include the FORTRAN 77 Tool Kit and the
MACSYMA symbolic mathematics system.

Symbolics 3600 Technical Summary Overview

Network Software

Symbolics Network System software and hardware enable 3600s
to share resources and exchange data with each other, with
Symbolics LM-2s, and with standard timeshared computers
running a variety of operating systems such as UNIX and
VAX/VMS. Local network communications are supported via an
industry-standard 10-Mbit/sec Ethernet interface.

Network connections are an important aspect of the 3600%
software design. System software provides support for network
operations including:the following features, implemented
compatibly across all supported operating systems:

A Sophisticated electronic mail utility

A Real-time interactive messages

X Generic file-system access

A Remote login capability

In addition to Ethernet software, the Symbolics Auto-dial
Feature permits direct connection between Symbolics computers
over standard telephone lines. It also can act as a gateway
between local networks at different sites. Many high-level user
services previously available only on computers linked by local
area networks are provided between computers on different local
networks.

3600 Hardware Overview
This section outlines:the features of the 3600 processor
architecture, network design, and peripherals.

The 3600 System

The 3600 hardware was designed to bring the power of

mainframe computing to the individual programmer. This is

made possible by:

A Dedicated 36-bit processor (32 bits data, 4 bits tag) with
instruction prefetch and run-time data-type checking

2 Demand-paged virtual memory (28 bits virtual, 24 bits
physical), word-addressed

A Interactive high-resolution (1150 x 900 pixels) display

A Console processor based on dedicated MC68000 for handling
keyboard and mouse input/output

A Optional high-resolution color display system and frame
buffers (up to 1280 x 1024 x 32 pixels)

Symbolics 3600 Technical Summary Overview

A Innovative keyboard design

2 Mouse pointing device

A Built-in digital audio output subsystem

A Industry-standard MULTIBUS (IEEE 796) for peripheral
expansion

A MC68000-based front-end processor (FEP) on the
MULTIBUS

A Dedicated 169-Mbyte Winchester disk (standard), or
474-Mbyte Winchester disks (optional), or 300-Mbyte
removable disk (optional)

A 10-Mbit/sec Ethernet transceiver and interface

2 Three serial input/output lines (both high- and low-speed)

The 3600 Processor

The workhorse of the 3600 systemn is the central processing unit.

The 3600 processor was designed along with the software,

yielding an unusually close coupling between the processor and

the Lisp system software. Features of the 3600 processor

include:

A 36-bit internal data paths

» Tagged architecture: run-time data-type checking with no
overhead

A Stack-oriented architecture, with large stack buffers (the top
page of the stack is always kept in a special high-speed
memory)

A Instruction prefetch unit and 2K instruction cache

A Microtasking operation (many Ethernet and disk controller
functions are performed in multiplexed processor
microcycles)

A Hardware-assisted garbage collection for memory efficiency

» IEEE-standard floating-point operations

3600 Networks

Although standalone configurations are available, Symbolics 3600
computers are designed to be linked in a local area network such
as Ethernet (see figure 1). Each 3600 is fitted with a 10
Mbit/sec Ethernet transceiver and cable as standard equipment.

Local area networks facilitate the sharing of programs, data files,
and network resources. Users realize the best of two worlds:
A The benefits of timesharing

Symbolics 3600 Technical Summary Overview

Figure 1. Block diagram of a STANDARD NODE coLongaPHics
3600 network. i

COLOR
DISPLAY

|

GATEWAY
TO OTHER
NETWORKS

169
MULTIBUS MBYTE
l——— 3600 WINCHESTER MULTIBUS MaﬁE
DISK =4 a0 WINGHESTER
K

N

ETHERNET
(10 MBIT SEC)
FILE SERVER
NODE
I 3600 ‘
LGP-1 VAX [TIME
LASER CRAPHICS O O (MSORUNK) | SHARED
PRIN & - “usi
OPTION H fa) B
OPaoER TOPS-20. TENEX
= DRIVE OrIONAL AND UNIX V7
(1600 BPI) SYSTEMS ARE
~ SUPPORTED

VAX 15 a trademark of Digital Equipment Corp
UNIX 15 a trademark of Bell Laboratores, Inc
TENEX 15 a trademark of Bolt Beranek and Newman inc

Copyright © 1983 Symbolics, Inc.

Intercommunication among users, shared access to files, use of
high-quality input and output devices.
A The advantages of single-user stations
Fast response, dedicated processor and memory resources,
customizable environment, protection from crashes, and greater
availability.
As few as two or as many as one hundred 3600s can be
coordinated on a single Ethernet network.

In addition, 3600s can be connected to other computer systems
on the Ethernet, allowing access to a variety of file systems.
Connected networks can be set up by attaching gateways to an
Ethernet, which attach it to different Ethernets or other
large-scale computer networks.

Symbolics 3600 Technical Summary Overview

On each local network, a 3600 with a full-duplex modem with
auto-dial and auto-answer capability constitutes the Symbolics
Auto-dial Feature. This feature allows high-level communication
between 3600s that are not on the same local area network.
Using Auto-dial, customers can receive remote diagnostics and
software patches from Symbolics inexpensively and expeditiously.

3600 Peripherals

3600 systems can be configured with a number of peripherals,
including:

R High-resolution color display system

A Industry-standard tape drive

A Additional Winchester or removable disks

A Symbolics LGP-1 Laser Graphics Printer

The User Interface
Users interact with a computer system through its user interface
— a combination of software and hardware that determines how
information is presented to the user.

The user interface of the 3600 is based on software that interacts

with four hardware components:

A A large alphanumeric keyboard with 88 keys, including
many special function keys.

A A high-resolution bit-mapped graphics display screen.

A The mouse, a hand-held graphical pointing device that rolls
on the desk surface next to the alphanumeric keyboard.
Moving the mouse on the desk causes an arrow (cursor) to
move on the display screen. The mouse has three buttons
which can be clicked (pressed) to invoke choices in various
contexts.

A The digital audio output system.

The goals of the 3600 user interface software design include:
A Clarity of presentation and interaction

A Consistency of interaction protocols throughout the system
A Ready access to help and information facilities

The following features create a coherent user interface:

A Window and menu-oriented graphics

A "Modeless" context-switching (no need to kill one program
to use another)

10

Symbolics 3600 Technical Summary Overview

Figure 2. The 3600 console
display, keyboard, and mouse.

A Consistent entering and exiting of programs
X Dynamic mouse documentation (changes depending on
context)

A Dynamic help and information facilities

11

Symbolics 3600 Technical Summary Overview

Notation Conventions
The rest of this document uses particular type fonts, formats,
and language conventions to present technical material.
A send
Printed representation of Lisp objects in running text.
A (send p3 ’:priority)
Lisp code examples, set off from the text.
A Find Unbalanced Parentheses, Do It
Command names in Zmacs, Zmail, and menus appear with
initial letter of each word capitalized.
A Clicking
Pushing down one of the buttons on the mouse momentarily.

12

Symbolics 3600 Technical Summary Software: Development Tools

3600 Software: Development
Tools

A distinguishing feature of the 3600 is the wealth of software

which has been written for it. This software realizes two main

functions:

A An integrated and extensible environment for progtam
development.

A An extensive support environment for the execution of large
software systems.

The Lisp program development environment consists of the
Zmacs editor, Lisp, the Display Debugger, and utilities for
examining Lisp objects. The editor is used to create Lisp source
code and to compile functions and files. The code is used in the
Lisp Listener. Errors invoke the Debugger, which is used to
examine the environment. Lisp data structures are examined in
the Inspector. The state of the system can be examined with
Peek.

In this chapter you will find occasional references to Lisp
language elements. See the next chapter, 3600 Software:
Languages, in particular the section The Zetalisp Language, page
31, for definitions and more detailed descriptions of these items.

The Zmacs Editor
Zmacs is the text editor on the 3600 system. It is a real-time
display editor; this means that the text being edited is always
visible and commands are executed immediately. Zmacs is used
for editing both text and program code. It allows users to switch
between several files being edited. Special features for editing
programs and for communicating with the Lisp environment are
provided.

Zmacs has several levels of usage, ranging in complexity from the
very simple to the advanced. A beginner can get by with a small
subset of basic commands. At the same time, sophisticated
commands are available for the more experienced user. An
important feature of Zmacs is that users can customize its
behavior and add extensions.

Zmacs exploits the mouse and the graphics capabilities of the
console display. Some commands can be given by either the
keyboard or the mouse. The mouse can be used to point at a
particular character or graphically mark a region.

13

Symbolics 3600 Technical Summary Software: Development Tools

The command set of Zmacs is based on the well-known EMACS
editor. Editors featuring the basic EMACS command set are
now available on many timesharing systems. Zmacs uses this
command set, and most EMACS commands are implemented
compatibly in Zmacs. In a computer facility that includes
timesharing systems with EMACS-like editors, users are able to
move between the 3600 system and the timesharing systems
without having to learn two different editors.

Manipulating Text

With Zmacs, inserting text is simple — just type the text.
Entering a special "insert mode" is not necessary.

Single-character commands move the cursor around, forward or
backward or to the next or previous line. The mouse can also be
used for this purpose.

With about fifteen basic commands, you can edit text effectively.
With proficiency you can increase your active repertoire.
Zmacs has commands to operate on the following units:
A Buffers

Get, select, display, kill, move within
A Characters

Move, delete, transpose
A Words

Move, kill, transpose, change printed case
A Lines

Move to beginning or end, open, close, kill, transpose
X Sentences

Move to beginning or end, kill
A Paragraphs

Move to beginning or end, mark, fill
A Lisp forms

Mark, move, kill, fill or grind, move to beginning or end
A Screens

Show next or previous screen, move to top, realign, redisplay
A Regions

Mark, kill, save
A Windows

Move to, split in two, merge into one

14

Symbolics 3600 Technical Summary Software: Development Tools

Operating on these units, Zmacs commands perform the following

actions:

A Mark a unit of text and move it or copy it somewhere else
in the file

A Search for a given unit

2 Replace all occurrences of one string with another string,
globally or incrementally

A Indent whole regions of text by arbitrary amounts

A Fill or justify paragraphs or arbitrary regions

For speed, frequently used commands are invoked with only one
or two keystrokes. Commands that are less frequently used have
longer, mnemonic names; sophisticated command completion
allows typing of abbreviations for these longer names. Through
the online command documentation, help is available immediately
for any command in Zmacs.

The editing environment can be tailored to suit the specific needs
of regular text, Lisp code, FORTRAN 77, and LIL code.

Editing Lisp Programs

Zmacs understands the syntax of Zetalisp. It signals matching
parentheses by blinking on the display screen: whenever the
cursor is just to the right of a close-parenthesis, the matching
open-parenthesis blinks, providing instant confirmation of
balanced parentheses. Zmacs ignores parentheses that are inside
character strings or otherwise quoted. A command called Find
Unbalanced Parentheses looks over an entire file and positions
the cursor at sites of suspected parenthesis errors.

Zmacs knows a set of stylistic rules for indentation of Lisp
programs. It can perform a carriage return and automatically
supply the appropriate amount of indentation for new lines in a
program.

Interacting with the Lisp environment

Zmacs is closely integrated with the Lisp environment; any Lisp

object in the entire system can be accessed quickly. Zmacs

supports the following operations on Lisp code:

A Individual function evaluation or compilation from within
the editor

15

Symbolics 3600 Technical Summary Software: Development Tools

2 Evaluation or compilation of an entire file
A Disassembly of compiled code
A Expansion of macros

Zmacs knows about many Lisp objects. This enables it to:
A Tell users the argument list of Lisp functions

A Generate descriptions of variables

A Generate descriptions of flavors

A Provide online documentation of functions and flavors
A Find modified functions

One of the most powerful commands in Zmacs, m—. (pronounced
"meta-dot"), allows you to edit the definition of any Lisp
function, variable, flavor, data structure, or other named object.
After typing the name of the thing to be edited, or pointing with
the mouse cursor at any name visible in the editor window,
Zmacs finds the source text that defines that object. It
automatically reads in the file containing the text, if necessary,
and positions the cursor at that definition.

Zmacs can keep track of changes made to programs. The
Compile Changed Definitions command will compile any code in
Zmacs buffers that has been changed in an editing session.

Using the Mouse

Throughout Zmacs, the mouse provides flexibility. The mouse
can be used for many editing operations. You can point with the
mouse to position the cursor at a precise point in the text. You
can mark (delineate) whole regions of the screen to be operated
on by sweeping over them with the mouse.

Without typing, you can copy or move regions of text from one
place to another. The mouse can be used for scrolling, that is,
to control which portion of the file is visible on the screen. With
the mouse, you can move to an arbitrary place in the file by
graphically specifying how far into the file you want to see. At
any time, a menu of editor commands is available.

16

Symbolics 3600 Technical Summary Software: Development Tools

Bit-mapped Display Editing

Zmacs takes advantage of the bit-mapped display to provide
faster and more convenient interaction with the user than is
possible on a conventional terminal. Zmacs can edit text written
in multiple fonts, with either fixed or proportional spacing or any
mixture of the two. The blinking of matching parentheses and
the use of the mouse have already been mentioned. Many
commands operate on a previously selected region. In Zmacs,
this region is underlined on the display, eliminating the danger of
operating on the wrong region.

Zmacs Commands
Zmacs has over four hundred commands. Online documentation
describing the commands is available at all times.

Some of the more advanced Zmacs features include the following:

A List Definitions
Displays the names of Lisp functions, macros, variables,
structures, flavors, and methods defined in the current file.
Clicking on one of these with the mouse positions the cursor to
the definition of that function.

A List Combined Methods
Understands the Flavors construct of Zetalisp. Give this
command the name of a flavor and the name of a message. It
types out a list of all of the component methods that are
combined to form the handler for the specified message.
Clicking with the mouse on any of these names finds the
definition of that component method and positions the cursor
there.

X Keyboard Macros
Captures a sequence of Zmacs commands and gives that
sequence a name. This new name can be invoked just like any
other Zmacs command or can be assigned to a key.

A Electric Shift Lock Mode
Facilitates entering programs that are in upper case: whenever
a Lisp symbol is typed, such as the name of a function,
variable, or special form, it is inserted in upper case; other
characters are inserted normally.

A Sort

17

Symbolics 3600 Technical Summary Software: Development Tools

Sorts the text in the buffer or in a region into alphabetical
order, either line-by-line or with user-specified division into
records.

A Word Abbreviation
Lets users define short abbreviations for commonly typed
words or phrases. When they type in one of these
abbreviations, it automatically expands into its full definition.
A main application for this is as a spelling corrector.

A Auto-Fill Mode
Automatically inserts carriage return characters as text is
typed. This allows continuous typing where you need not
think about inserting line breaks.

Customizing the Editing Environment

The Zmacs editing environment can be customized. Some
commands have options which can be set to suit each user’s style
of working. You can also control the assignment of commands
to keys, adding new commands and replacing other commands as
you see fit. The frequent commands can be assigned to a single
keystroke. New editor commands can also be written in Lisp
and added to Zmacs.

Zmacs is built on a large and powerful system of
text-manipulation functions and data structures, called Zwei. By
writing programs that call Zwei functions to perform primitive
text manipulation operations, you can build a library of
commands and documentation.

Any interactive program running on the 3600 can provide the

Zmacs text-editing capability simply by calling functions in the
Zwei system. For example, the Zmail mail reading system uses
Zwei functions to allow editing of a mail message as it is being
composed, or after it has been received. This sharing of large

subsystems is unique to computer systems that provide a large,
dynamically linked environment, as the Lisp environment does.

18

Symbolics 3600 Technical Summary Software: Development Tools

Other Program Development Tools
Programmers need effective support tools in order to develop
large systems and complex graphics applications. The Inspector,
Display Debugger, and Peek utilities are all advanced program
debugging and inspection tools that make heavy use of the 3600
graphics capabilities. The File System Editor is a tool for
managing source code and text files throughout the system. The
Font Editor allows users to design and modify type fonts that
appear on the screen.

The Inspector
The Inspector is a graphic tool for examining data structures. It
displays a Zetalisp object, showing all of its components.
A List
Displays elements of list
A Array
Displays elements of array
A Structure
Displays structure slots and names of slots
A Symbol
Displays name, value, property list, associated function, package
A Function
Displays compiled assembly language code
A Flavor
Displays instance size, bindings, message-handler, name,
instance variables, method table, dependencies, inclusions,
package, property list
A Flavor instance
Displays flavor, information about methods, instance variable
names and values
The Inspector appears as a full screen with several subpanes (see
figure 3). The top pane is an interaction window. Below that is
a history window and some inspection windows. Each inspection
window can contain a different object. When a new object is
inspected in the bottom window, the previously inspected objects
get shifted to the higher windows. The history window records
the objects already examined, allowing you to back up and
continue down another path.

19

Symbolics 3600 Technical Summary Software: Development Tools

Figure 3. An Inspector
window.

’tvimenu

X
l More adove Exit
#<FLAVYOR TU:MENU S526661> Return
TV:MULTIPLE-MENU-CHOOSE-MENU Hodi fy
#<FLAVOR TV :MULTIPLE-MENU-CHOOSE-MENU S55364> DeCache
(TV:HULTIPLE-MENU-CHOOSE-MENU-HIXIN TV:HENU) Clear
TV :MULTIPLE-MENU-CHOOSE-HMENU-MIXIN Set \
#<FLAVOR TV:MULTIPLE-MENU-CHOOSE-MENU-MIKIN 555340>
Bottom of History

Top of odject

a fist
(TV:MULTIPLE-MENU-CHOOSE-MENU-MIKIN TVY:MENU)

Bottort of object

Top of odject

TV:MULTIPLE -MENU -CHOOSE -MENU -MIXIN

Value is unbound

Function Is unbound

Property list: (SI:FLAVOR #<FLAVOR TV:MULTIPLE-HENU-CHOOSE-MENU-MIXKIN 5553408> SOURCE-FILE-NAME
Package: #<Package TV 3615215>

Bottom of odject

Top of odject
#<FLAVOR TV:MULTIPLE -MENU -CHOOSE ~-MENU -MIXIN 655340>
Naned structure of type SI:FLAVOR

SI:FLARYOR-INSTANCE-SIZE: NIL

SI:FLAVOR-BINDINGS: NIL

SI :FLARVOR-MESSAGE-HANDLER: NIL

SI:FLRVOR-NAME: TV:MULTIPLE-MENU-CHOOSE-HMENU-HMIXIN

SI :FLAVOR-LOCAL-INSTANCE-VARIABLES: NIL

SI :FLAVOR-ALL-INSTANCE-VARIABLES: NIL

SI:FLAVOR-METHOD-TABLE: ((MULTIPLE-CHOOSE NIL NIL ((METHOD TV:MULTIPLE-MENU-CH
SI:FLRYOR-DEPENDS-ON: (TV:MENU-HIGHLIGHTING-MIXIN)

SI:FLAYOR-DEPENDED-ON-BY: (TV:POP-UP-HMULTIPLE-MENU-CHOOSE-HENU TV:HMULTIPLE-MENU-
S1:FLAVOR-INCLUDES: NIL

SI:FLAVOR-PACKAGE : #<Package TV 3615215>

SI:FLAVOR-DEPENDS-ON-ALL : NIL

SI:FLRYOR-WHICH-OPERATIONS: NIL

SI:FLAVOR-GETTABLE-INSTANCE-VARRIABLES: NIL
SI:FLAVOR-SETTABLE-INSTANCE-VARIABLES: NIL
SI:FLAVOR-INITABLE-INSTANCE-VARIABLES: NIL
SI :FLAVOR-INIT-KEYHORDS: NIL
SI:FLRVYOR-PLIST: (SI:HMAPPING-TABLE-OFFSETS (TV:LAST-ITEM) SI:ORDERED-VA

Bottom of odject

Symbolics 3600 Technical Summary Software: Development Tools

In the Inspector, the component objects are all mouse-sensitive.
This means that if you point the mouse cursor at one of these
components and click a mouse button, that component object
gets inspected. It expands to fill the window and its components
are shown. In this way, you can dive into a complex data
structure, exploring the relationships between objects and the
values of their components.

Components of the objects being inspected can be modified on
the spot. This is done by using the menu at the top-right part of
the screen to edit an object.

The Display Debugger

The Display Debugger provides a clear picture of the state of a

Zetalisp process at the time of an error. It divides its area of the

screen into seven panes (see figure 4):

A Display of the stack history with a pointer to the selected
stack frame

A The names and values of the arguments to the selected stack
frame

A The names and values of the local variables of the selected
stack frame

A A command menu

A A Lisp interaction window

A An Inspector window

A An Inspector history list

You can select a different stack frame by clicking on it with the
mouse; you can then examine its arguments and local variables.

The command menu in the Display Debugger includes commands
to return an arbitrary value from any stack frame, to restart any
function call in the stack, and to recover from the error and
proceed if possible. The Display Debugger is interfaced to the
Inspector so that you can inspect the various values you find in
stack frames as well as the bodies of executing functions.

Since some programmers prefer to work with the mouse while
others prefer not to use it, the Debugger supports both a
keyboard-oriented style of working and a mouse-pointing style.

21

Symbolics 3600 Technical Summary

Software: Development Tools

Figure 4. A Display Debugger
window.
More adbove
*EVAL
232 BR-RTOH 236
233 MOVE D-PDL LOCAL|3 3 RRGL
234 (MISC) LENGTH D-PDL
235 POP LOCAL|S ; N-ARGS
236 MOVE D-PDL LOCAL|1 ;FCTN
237 (MISC) SYMBOLP D-IGNORE
240 BR-NIL 245
241 MOVE D-PDL LOCAL|1 sFCTN
242 (HISC) FSYMEVAL D-PDL
=> 243 POP LOCAL|1 ;FCTN
244 BR 236
245 MOVE D-PDL LOCAL|1 ;FCTN
246 MOVEH LOCAL|2 ;CFCTN
More delow
< k-Frame * PC=24
Args: Locals:
Rrg @ (FORM): (TU:MENU) Local @ (ARGNUM): @
Local 1 (FCTN): TVU:MENU
Local 2 (CFCTN): NIL
Local 3 (ARGL): NIL
Local 4 (MRX-ARGS): NIL
Local 5 (N-ARGS): @
Local 6 (ARG-DESC): NIL
Local 7 (TEM): NIL
Local 8 (COUNT): NIL
Local 9 (QUOTE-STATUS): NIL
Local 10 (REST-FLAG): NIL
Local 11 (FEXPR-FLAG): NIL
Local 12 (LAMBDAR-LIST): NIL
Bottom-of stack

(SI:LISP-TOP-LEVEL)

+(SI:*xEVAL (TV:HMENU))
(DBG:FOOTHOLD)
(DBG:SIGNAL-TRAP #<UNDEFINED-FUNCTION-TRAP 272084505>)
(SIGNAL #<UNDEFINED-FUNCTION-TRAP 27284565>)
(#<UNDEFINED-FUNCTION-TRAP 27284585>)
((METHOD CONDITION SIGNAL) SIGNAL T)
More below

(SI:LISP-TOP-LEVEL1 #<LISP-LISTENER Lisp Listener 1 113808240 exposed>)

Return to normal debugger, staying in error context.
Supply a value to use as
Lisp Top Level in Lisp Listener 1

ttem into errar handler,

R: Get
ROAD SER: Tyl ___

22

What Error Inspect Return Set arg T
Arglist Edit Throw Search NIL
»>Trap: The function TV:MENU is undefined.

Symbolics 3600 Technical Summary Software: Development Tools

Peek: Examining the State of the System

The Peek utility program is a window-oriented interface that lets
you examine and modify the state of the following:
A Processes

A Windows

A File system connections

R Virtual memory areas

A Network process status on the user’s machine

A Network servers

A Network hosts

A Internal processor counters

All of the displays in Peck update themselves continually, so you
can watch as processes change state, windows get created or
killed, memory areas get allocated or deallocated, and so on (see
figure 5).

Within Peek, menu commands can be selected with the mouse to

perform operations on the following displayed items.

A Process
Arrest, Unarrest, Flush, Reset, Kill, Debugger, Describe,
Inspect.

A Window
Expose, Deexpose, Select, Deselect, Deactivate, Kill, Bury.

A File system connection
Reset, Describe, or Inspect a host-unit.

M Virtual memory areas
Insert or Remove a display of all regions in an area.

A Network process status on the user’s machine
Show Hostat for selected host, Show Hostat for all hosts, Insert
or Remove static Hostat, Supdup to selected host, Telnet to
selected host, Send a message to a user on a selected host,
Open or Close a network connection, Insert or Remove a
display of packets on the receive or transmit list.

A Network Servers
For each server: server name, process status, and file
connections, each with its own menu of operations. All the
operations listed under Network process status on the user’s
machine (above) can be applied to the server name. All the
operations under Process (above) can be applied to the process.

23

Symbolics 3600 Technical Summary Software: Development Tools

Figure §. A Peek window,
showing the state of current
windows.

Processes Counters freas File System W
Servers Help Quit Hostat haosnet

Screen Color

Screen Main Screen

Peek
eexpos
Dynanic Mode Command De
Peek Pane 1 elect X
Edit: REPORT.NEH SRC:<RO

Edit: REPORT.NEW SRC 00ese1ect
Zmacs Hode Line Hind eac@cvate
Typein Hindow 2 Kill
Zwei Hith Typeoy Bury le 2
Lisp Listener 1
FED (TR128)
Fed 1
Character Pane 1
Unselectable Pane |
Basic Fed Pane 1
Register Pane 1
Conmand Menu Pane 3
Highlighting Comnand Menu Pane 1
Fed Status Pane 1|
Unselectable Chuv Pane 1
Connand Menu Pane 4
Comnmand Menu Pane S
Comnand Menu Pane 6
Fed Housable Typeout Hindow 1
Inspect Frame |
Inspect Pane Hith Typeout 1
Inspect Pane 1
Inspect Pane 2
Command Menu Pane 1
Inspect History Pane Hith Margin Scrolling 1
Interaction Pane 1
Supdup -- not connected
Main ZMail Hindow
Zmail Sumnmary Scroll Hindow 1
Zmail Hain Command Menu Pane 1
Zmail Hindow 1
Znail MHouse Sensitlive Hode Line Pane |
Typein Window B
Zwei Hith Typeout Unselectable 8
Zuwei Mini Buffer B

Telnet -- not connected
Converse
Converse

Mode Line Hindow 3
Typein Hindow 6
Zuwei Hith Typeout Unselectable 6
Error Handler Frane 1
Inspect Pane 3
Inspect History Pane 1
Args:
Locals:
Stack Scroll Pane 1
Proceed Types Pane 1
Conmand Menu Pane 2
Error Handler Lisp Listener Pane |

Zxpose the window.

USER: Heny Choose

Symbolics 3600 Technical Summary Software: Development Tools

The following operations can be applied to a file connection:
Close, Insert Detail, Remove Detail, Describe, Inspect
associated with.

The File System Editor: FSEdit

On the 3600, users manipulate the file system with a
display-oriented tool called the File System Editor (FSEdit). This
editor displays the name of every item in a directory. The item
names are mouse-sensitive. Clicking with the mouse on a
subdirectory name dynamically opens the subdirectory, displaying
its contents. By opening and closing directories and
subdirectories, users can poke around in the file system and see
what is there. Users can also give a wildcard specification to
select files for examination.

Once you have found a directory, file, or link on which to
operate, you can click on it and get a menu of useful operations
for that kind of item (see figure 6). The following operations
are supported on directories:

A Delete or undelete (soft deletion)

2 Expunge contents (hard deletion)

A Create new directories and links

A Rename

A Invoke the dumper to save the contents on a backup tape

A View and edit the directory properties

The following operations are supported on regular files:

A Delete or undelete

A View contents

A Edit

A Rename

A Invoke the dumper to save the contents on a backup tape
A View and edit the file properties

A Make a hardcopy of the file

The Font Editor: FED

The font editor program, called FED, allows users to create,
modify, and extend type fonts that appear on the display screen
(see figure 7). Fonts are drawn on a grid using the mouse or are
edited on the gray plane, a mechanism for adding pieces of
characters onto characters that are being built. The gray

25

Figure 6. A File System
Editor window, with a
momentary menu of directory
operations.

Symbolics 3600 Technical Summary Software: Development Tools

File System Operations

Tree edit root
Incremental Dump
Print Disk Label

Tree edit any
Complete Dump
Print Herald

Tree edit Homedir

Salvage

9
Flush Free Buffer

Maintenance
Reload/Retrieve
Free records

File System Editor
Mark this directory as
1,82 :35: OAD

dJeteted,
U

Server Shutdoun Server Errors Lisp Window Flush Typeout
HELP QUIT
Decache
Expunge
Create Inferior Directory
View Properties 5725(16) 08/07/82 22:18:06 (©9/08/82) MMcM
Edit Properties 9209(8) $07/27/62 07:45:40 (16/20/82) DOLA
New Property 11362(16) 08/27/82 09:59:17 (10/30/82) 2ippy
Create link 5284(B) 04/069/82 17:38:13 (10/07/62) BEE
Rename 4619(16) 04/09/82 1v¢:38:32 (©9/08/82) BEE
Wildcard Delete 4175(16) 08/07/82 22:20:0¢ (09/08/82) MMcM
Link Transparencies 14699(8) 10/17/82 20:52:02 (10/29/82) CWH
5Iarm.aqpin.Ib 3 5349(16) 10/28/82 20:49:26 (10/30/82) DLA
CAFE.BIN.1 1 13398(16) 08/07/82 22:21:13 (09/08/82) MMcM
CRFE.LISP.? 2 59439(8) $08/13/82 13:12:08 (10/20/82) dlu
CRFE.QGBIN.? 2 1774(16) 08/14/82 11:02:23 (10/30/82) DLA
color-hacks.lisp.4 2 3585(8) 09/01/82 09:02:01 (16/07/82) dlu
COLXOR.BIN.1 3 4854(16) 08/07/82 22:24:14 (09/08/82) MMcM
COLXOR.LISP.56 4 13v43(8) $10/05/682 14:10:16 (10/20/82) DLA
COLXOR.GBIN.S4 4 6426(16) 19/05/82 15:50:51 (10/38/82) Zippy
CROCK .BIN.4 2 3353(16) 08/11/82 04:52:56 (09/08/82) Moon
CROCK .LISP.? 3 7952(8) $08/11/82 04:52:40 (106/20/82) Moon
CROCK .GBIN.10 4 6933(16) 08/2v/82 09:57:56 (16/30/82) Z2ippy
DC.BIN.1 3 4926(16) 08/07/82 22:27:07 (09/08/82) MMch
DC.LISP.S 3 8169(8) $07/2¢/62 21:10:05 (16/20/82) Mhch
DC.GBIN.S 5 84067(16) 08/27/82 09:56:38 (10/308/82) 2ippy
demo .LISP.37 2 4536(8) 08/12/82 13:09:5¢4 (89/08/82) dlu
DEUTSC.BIN.1 2 1718(16) 08/07/82 22:28:47 (09/08/62) MMcM
DEUTSC.LISP.33 2 5117(8) $02/13/82 01:31:46 (106/22/82) MMcM
DEUTSC .GBIN.34 2 2117(16) 0v/24/82 94:35:09 (10/30/82) DLA
DLWHRK .BIN.1 3 4153(16) 08/07/82 22:29:27 (03/08/82) MMcM
DLWHAK .LISP.35 3 8987(8) $07/24/62 08:06:17 (10/29/82) DLA
DLWHAK .GBIN.3 4 5881(16) or/24/82 14:07:22 (10/30/82) DLA
DOCSCR.LISP.3 S 18853(8) 10/09/81 ©04:09:13 (106/08/82) MMCM
DOCTOR.LISP.8 2 6390(8) 10/09/81 ©64:09:05 (10/08/82) MMM
edit.LISP.2 1 804(8) 08/12/682 12:58:40 (09/23/82) dlu
GEB.BIN.2 4 5615(16) 08/07/82 22:30:48 (09/08/62) MMchM
GEB.LISP.2B 4 13543(8) $09/27/82 10:46:24 (10/22/82) dlu
GEB.QBIN.2S S 7984(16) 09/30/82 13:13:29 (10/306/82) DLR
HAKDEF .BIN.2 2 2v88(16) 08/07/82 22:14:14 (©9/08/82) MMcM
HAKDEF .CROSS-QFASL .2 3 4064(16) 08/0?/82 22:15:24 (09/08/82) MMcM
hakdef .lisp.15 2 3694(8) ! 10/29/82 15:14:56 (10/29/82)
hakdef .gbin.11 3 4772(16) ! 10/29/82 18:25:5? (10/30/82) DLH
HCEDIT.BIN.Z2 2 3416(16) 08/07/82 22:32:21 (09/08/82) MM
HCEDIT.LISP.30 3 9488(8) $08/07/682 03:13:22 (10/20/82) MMcM
HCEDIT.OBIN.30 3 427¢7(16) 08/08/82 21:24:27 (10/30/82) DLA
INTRO.BASIC.1 1 ?53(8) 16/09/81 04:08:56 (10/08/82) MMCM
LISS.LISP.3 1 2373(8) 10/09/81 04:08:51 (10/08/82) MMCM
metr.lisp.3 S 16148(8) 98/13/82 14:38:35 (039/14/82) lispm

Figure 7.
screen.

Symbolics 3600 Technical Summary Software: Development Tools

The font editor

=

vl

27

Select Character to edit Set Points Configure [Gray Char | Edit Font
el x B a~cni d|Flip Points Grid Size |Clear Gray |List Fonts
S 1+ e wdco>on ufsme: TR12B Center View| Swap Gray | Save Char
V3 e« « 4 < 2lcharacter: L (114) Move View | Move Gray |Rename Char
= v " w8 % & ‘luidth: 18 Draw Line |Rdd in Gray| Show Font
() w+,-.,/701 Draw Spline Set Sample
234567889 : ; Erase All Read File
<=>7aRARBCDE Stretch Write File
T 2
Font parameters (decimal eflect ‘
20NT~ 2" ab clslines Height:(ls 2 [Move Black
de fghijk1l mBlinker Width: 5 ;
Nopar st uwv WBase Line: 13
xyz{ | ¥~ 7S Character Height: 16 _
. ase dot Erase/F| i P:Move edaes of char box, P2:Syustem ment

Symbolics 3600 Technical Summary Sofiware: Development Tools

plane acts as a "shadow" behind the drawing plane. It lets users
compare the character under construction with another character.

With FED, characters of a font can be stretched or contracted
and then examined in the context of a sample character string.

Tools for Managing Large Systems
As programs have grown larger in recent years, it has been
recognized that a primary bottleneck in software development is
software complexity. The job of a program-development system
is to help the programmer manage that complexity. As this
section explains, the Zetalisp environment provides a battery of
language features and interactive tools to make working with
large programs easier.

Defining a System: Selective Modification and
Recompiliation

Large Lisp programs are usually divided into several different
files. This yields manageable pieces of code for text editing and
compiling. Such a set of files can be presented to Zetalisp as a
system and then managed as a unit. A system declaration lists
all of the files in a system and specifies their interdependencies.

For example, one file might provide definitions that must be
loaded into the Lisp environment in order for a second file to be
compiled correctly. When asked to compile a system, the
software automatically finds all of the files that have been
modified since the last time they were compiled. The software
then offers to compile them, first performing any actions that are
required by the dependencies, such as loading definition files.

Recompilation can be done selectively. In this mode, you are
asked whether the file should be compiled and are presented with
a directory listing showing the existing versions of the file with
their creation times and authors. You are offered a
source-to-source comparison between the installed version and the
latest version, or between any other versions. This allows you to
examine what changes have been made to the software and to
audit these changes before approving the recompilation.

28

Symbolics 3600 Technical Summary Software: Development Tools

Patching Bugs

The patch system for the 3600 is useful for correcting

software errors (bugs) and for distributing software improvements
and updates.

Software bugs are inevitable in large and complex software
systems. A desirable maintenance goal is to fix the problem and
quickly distribute the correction to all users of the system. If the
system is a small program that is loaded into the Lisp
environment by each user every time it is used, you just
recompile the files and users will get the latest version when they
load them. However, if the system is large and versions of it are
stored away in saved Lisp environments, it is time-consuming to
completely reload and recompile the system.

Zetalisp provides a facility whereby the maintainers of the system
can create patch files containing function redefinitions or other
Lisp forms that correct software problems and make these
patches publicly available. Users can give a command that loads
all of the latest patches to the system.

Simple commands in Zmacs (Add Patch and Finish Patch) make
it easy to install new patches to a system. Changes are inserted
in source form and are automatically recompiled.

The patch system performs a number of tasks to construct a

documented patch:

A Assigns unique two-part version numbers based on the
version of the program that was loaded and the level of
patches that have been installed.

A Includes author of patch.

A Includes reason for: patch.

A Documents environment in which patch was constructed.

29

Symbolics 3600 Technical Summary Software: Languages

3600 Software: Languages

This chapter provides summaries of the language systems on the
3600, including Zetalisp, Symbolics Common Lisp, the Interlisp
Compatibility Package, FORTRAN 77, LIL, and MACSYMA.

The Zetalisp Language
Zetalisp, a powerful modern dialect of Lisp, is the principal
language of the 3600. All system software is written in this
dialect.

Zetalisp is a large language. An important advantage is its
extensibility. This is in contrast to some languages which have a
fixed set of language: constructs. The extensibility of Zetalisp
derives from its efficient, interactive, incrementally compiled, and
dynamically linked programming environment. The environment
is full of facilities that can be invoked with simple Lisp function
calls or message-passing operations.

Data Types

Support for a range of data types is provided both in software
and in hardware. With the tagged architecture of the 3600,
run-time checking of data types is automatically performed in
hardware for all operations. Type mismatches always signal an
error. For example, obvious errors such as trying to take the car
(first element) of a number or add to a nonnumber are always
detected, even in compiled code. Similarly, attempts to reference
an array outside its bounds also cause run-time errors.

The Zetalisp language provides many predefined data types

including:

A Numeric
Includes fixed-point, IEEE-standard floating-point, and
infinite-precision fixed-point (bignum) numbers. Bignums can
represent millions of digits.

A Multidimensional array
Can contain a mixture of Lisp objects of any type, including
arrays. Special types of arrays exist to store fixed-point
numbers, characters, or bits in a packed format. Simple Lisp
functions make arrays and examine and alter their elements.
Array bounds can be adjusted dynamically.

A Character string

31

Symbolics 3600 Technical Summary Software: Languages

Contains characters. Supported as a type of array, so the
regular array accessing functions can be used to manipulate the
characters of a string directly. In addition, an extensive set of
string-manipulation functions provide such capabilities as string
searching, string concatenation, substring extraction, string
reversal, and string trimming.

R Plane
Contains Lisp objects. Special multidimensional array data
type whose bounds, in each dimension, are plus-infinity and
minus-infinity. All integers are valid as indices.

A Structure
Contains named components, each of which can be any Lisp
object. The user can specify the type identifier for such
structures and also control their printed representation.

2 Flavor
Contains data (instance variables) and operations on the data
(methods). Provides support for object-oriented programming
based on message-passing. (See page 38.)

Zetalisp also allows users to define their own types.

Program Control Mechanisms

Having a wide range of program control mechanisms is important
to managing the flow of control in complex programs. Zetalisp
has a comprehensive set of control constructs, including
conditionals, dispatch forms, a powerful loop facility, safe and
structured nonlocal exits, coroutines, and processes.

Standard Control Structures

Zetalisp has all of the control structures employed by
conventional languages. It has simple conditionals, multiple
branching conditionals, and several kinds of dispatching (case)
constructs. Several iteration constructs are provided, including
dolist and dotimes for simple iteration over a list or a sequence:
of numbers. The Maclisp do is available for more general
iteration, allowing users to step many variables in parallel and
perform arbitrary end-tests. The traditional Lisp prog feature
with go is also supported in Zetalisp, although it is rarely needed.

32

Symbolics 3600 Technical Summary Software: Languages

The Loop Facllity

The powerful loop macro of Lisp is a programmable iteration

facility. Loop forms are intended to look like stylized English

rather than traditional Lisp code. Loops consist of three parts:
A Initialization

A Body

» Exit

Each part is introduced by special keywords. Over 40 loop
keywords are available, including with, for, repeat, initially,
finally, collect, do, append, count, sum, always, never, if,
therels, unless, when, and until. Programmers can combine
these into very flexible iteration expressions.

Advanced Control Structures

Zetalisp provides advanced control structures. One of these is
the catch/throw mechanism for structured nonlocal exits. If,
during evaluation, a throw form is encountered, the system looks
for a catch form with a tag matching that of the throw. If
found, the body of the catch form is terminated, and catch
returns the values given to throw. One of the primary uses of
this mechanism is to exit a program when an error is detected.
It can also be used, for example, to get out of levels of looping
and recursion upon finding an item for which the program has
been searching.

Zetalisp also provides the unwind-protect special form which is
used to ensure that certain "clean-up” computations occur, even
in the context of a nonlocal exit (for example, a catch/throw
exit). By setting up unwind-protect forms around code, you can
arrange for temporary effects to be undone whenever an
evaluation finishes, whether normally or by means of a nonlocal
exit.

Coroutine Structures

Zetalisp provides two kinds of coroutine control structures.
Simple coroutines can be created using closures. A closure is a
Zetalisp function along with some saved variable-binding
information. A function can be written as a generator that saves
its state in some variables. Then creating a closure of that

33

Symbolics 3600 Technical Summary Sofiware: Languages

function over those variables gives a new instance of the
generator.

More powerful and general coroutines can be created using stack
groups. A stack group holds the entire state of an executing Lisp
program, including the control stack history and the state of the
bound variables. At any time, one stack group is the currently
executing stack group. It can call a second stack group; this
transmits a value to the second stack group and starts its
computation running. Multiprocessing, implemented using stack
groups and a scheduler, is also provided (see page 66).

Function Calling

Zetalisp provides flexible argument-passing mechanisms for
functions. Features include:

A Any number of parameters to functions

A Optional parameters

A Arguments to functions passed as keywords

Multiple Values

Zetalisp allows a function to return any number of values. This
is useful when a function computes more than one interesting
value. In ordinary Lisp dialects, you would have to create a data
structure (such as a list) to contain the values, and return it; the
caller would then have to take this apart again. In Zetalisp, the
caller can specify variables that should be bound or set to the
returned values.

Input/Output Mechanisms

Input from and output to a number of places simultaneously is
handled via the streams facility in Lisp. Many of the software
facilities for input and output are based on generic operations
(see the discussion of flavors, page 38). The character set,
streams, and formatted output are discussed in this section.

Zetalisp Character Set

Zetalisp represents characters as fixnums (small integers).
Fundamental characters are represented in eight bits. In some
contexts, characters are represented in 16 bits to allow font
information to be attached to the characters.

34

Symbolics 3600 Technical Summary Software: Languages

Streams

Input and output in Zetalisp are processed by sending messages
to stream objects. A stream is a Zetalisp object that can act as
a source or sink of sequential data. An input stream object is
sent messages such as:

A Read the next datum

A Read a line

A Are data available?

A Clear buffered input

An output stream object is sent messages such as:

A Write this datum

A Write this string

A Wait for buffered output to finish going to device

Predefined streams are provided for communication with the
keyboard, windows on the screen, files in any accessible file
system, network connections, editor buffers, and character strings.

All input functions work on any input stream, and all output
functions work on any output stream. Streams can be
unidirectional or bidirectional. Streams can be interconnected
into arbitrary patterns. Using a system of predefined flavors,
programmers can define stream objects to create specialized
input/output interfaces.

Formatted Output

Zetalisp provides an output function called format for merging

literal and computed strings. The string can contain escape

sequences to specify the following operations:

A Print numbers in any base, with specified field widths and
padding characters

X Print English cardinal and ordinal numbers

A Print Roman numerals

A Print pluralized words

A Space to particular columns

A Output control sequences

A Conditionalize text

A Iterate over lists to justify fields and perform other actions

Formatted output can be sent to a character string or to any

output stream.

35

Symbolics 3600 Technical Summary Software: Languages

Predefined Functions

Literally thousands of functions and flavors are predefined in
Zetalisp. For example, to sort a list or an array, the sort
function is used, which provides a carefully optimized quicksort.
If a hash table is needed, the make-hash-table function is used,
and then simple Lisp functions can be used to insert elements
and look them up. Pseudorandom numbers are available by
calling the random function. It is possible to convert dates and
times between various formats, and print them out or read them
in, by calling predefined functions.

Zetalisp provides a range of numerical functions, including basic
arithmetic operators, transcendental functions, numerical type
conversions, logical operators (including bit and byte
manipulation primitives), IEEE floating-point arithmetic,
infinite-precision fixed-point arithmetic, complex numbers, and
rational numbers.

More advanced numerical operations are also part of the
standard Lisp environment. For example, two high-level
functions are used to solve systems of linear equations. Matrix
multiplications, inversions, transpositions, and determinants can
be invoked with a single function call each. These are all part of
the Lisp environment and are available at any time.

Packages for Independent Namespaces

The Lisp environment is based on a single, large workspace
which contains all of the functions and global variables of all of
the programs in the system. To prevent naming conflicts
between different programs that both happen to choose the same
name for some function or variable, the system provides a
hierarchical system of name spaces, or packages, for different
programs.

A package is an association between character strings and Lisp
symbols. In different packages, the same character string can be
associated with different symbols. For example, si:foo and
tv:foo refer to distinct symbols named foo.

The package prefix does not always have to be specified

36

Symbolics 3600 Technical Summary Software: Languages

explicitly, since a current package is always used by default. In
Zmacs, programmers can set the attribute list of a file so that a
package name is always associated with that file.

When a file without an explicit package declaration is loaded into
a Lisp Listener, all symbols in the file are associated with the
current package. Individual symbols can be prefixed with
another package name that overrides the default.

Figure 8. A package globai:
hierarchy.
user: zwei: system: format: fonts:
system-internals: compiler: tv:

Packages are arranged in a strict hierarchy. A subpackage can
inherit symbols from its parent package. In figure 8, the package
compiler: inherits symbols from its parent package system:,
which in turn inherits from its parent package global:.

Interactive Debugging Tools

Several interactive facilities help the programmer examine and

debug programs.

A The trace facility provides a means of finding the callers of
a particular function or set of functions.

A apropos finds all of the symbols whose name contains a
given substring; this is useful if you remember only part of a
name.

A Memory regions can be marked so that an error can be
signalled when a program incorrectly writes into the wrong
memory region.

2 Single-stepping through a program is supported, allowing you
to watch each evaluation as it happens and examine the
environment between steps.

37

Symbolics 3600 Technical Summary Software: Languages

Flavor System: Language features to support
object-oriented programming style

Symbolics provides support for object-oriented programming
through a collection of language features known as the Flavor
System. Object-oriented programming deals with objects, which
are instances of types, and generic operations defined on those

types.

In object-oriented programming, you define a type by defining
the data known to the type and the operations that are valid for
those data. Then you create instances of the type. Each
instance maintains a local state and has an interface to the world
through the defined operations.

Thus, in object-oriented programming, data and procedures are
encapsulated within an instance of the type. This shields users of
a facility from the details of its implementation, resulting in
programs that are easier to describe, develop, and maintain.

What is the Flavor System?

The Flavor System is Symbolics implementation of the language
features that support object-oriented programming. Flavors are
the abstract types; merhods are the generic operators. The
objects are flavor instances that you manipulate by sending
messages, which are requests for specific operations.

The Flavor System, you define the flavors and the methods
associated with them in one part of a program. Then, in another
part of the program, you create instances of the flavors and send
them messages to request that operations be performed.

The Flavor System provides a unique and powerful mechanism
for declaring the relationships between flavors. A new flavor
definition can be built from component flavors; the method
definitions for each flavor can override, augment, or modify the
methods from the component flavors.

The flavor dependencies form a graph structure; they are not
constrained to be hierarchical as in some languages that support
an object-oriented style. Thus, the Flavor System provides the
means for building arbitrarily complex flavors while retaining the
advantages of modularity and maintainability.

38

Symbolics 3600 Technical Summary Software: Languages

Figure 9 contains a graphical representation of flavor
combination and of the process of instantiating a flavor.

Using Flavors

The Flavor System provides a constructor for flavors. Allocating
and using a flavor instance is a matter of calling the constructor
function for the required flavor. This process is known as
instantiation. For example, suppose you need an instance of a
flavor called system-process:

(setq p3 (make-instance ’system-process))

The definition for the:flavor can contain declarations of initial
values for the local variables and, in many cases, you can also
declare initial values in the call to the constructor.

Message passing

Once a flavor object has been instantiated (as in p3 from the
example above), it can receive messages. The messages can be
accessors for local state variables or they can be requests for the
results of procedures. For example, suppose that one of the local
variables for a system process records its priority. The instance
returns the value of this variable when it receives the appropriate
accessor message:

(send p3 ’:priority)

Again, the accessor messages can be created automatically by the
Flavor System.

Similarly for operations on a process, you send a message to the
process instance requesting that the operation be performed. For
example, suppose that one of the operations defined for a system
process is that it can be reset:

(send p3 ’:reset)

Of course, the operations are implemented as function calls and
can accept arguments. Suppose that to reset a process you had
to supply a validation code that was obtained from an object of
another flavor. The call might look like this:

(send p3 ’:reset (send last-error ’:reason))

Figure 10 contains a graphical representation of the
message-passing operation.

39

Symbolics 3600 Technical Summary Software: Languages

Figure 9. Flavor combination
(1) and instantiation (2).

Flavor Flavor
window border
Instance variable Instance variable

template) (

template
Method @ Method

:redraw :after :redraw

Flavor
window-with-border

\,. Instance variable J
template

L Methods)
:combined :redraw «

Y

Instantiation process

Instance of flavor
window-with-borders

Instance variables
with values

Pointer to methods

Copyright © 1983 Symbolics, Inc.

40

Symbolics 3600 Technical Summary Software: Languages

Figure 10. Message-passing
operation. Flavor instance x
sends a message to flavor

instance y.
Flavor
y
Instance variable
templa
Execute the emplate
rredraw
methOd sangs .M.?t.h'().d.s. asaan
> sredraw

%

Instance of flavor
y

Instance variables

Pointer to methods

41

(sendy ’:redraw)

Flavor
X

Instance variable
template

Methods

Instance of flavor
X

Instance variables

Pointer to methods

Copyright © 1983 Symbolics, inc.

Symbolics 3600 Technical Summary Software: Languages

Designing Flavors

Flavor definitions include several kinds of information:

A Names of other flavors from which the new one inherits
local variables and methods.

A Identifiers for local variables, called instance variables, and
any procedures or values for initializing these.

A Methods for implementing the operations required for
objects of this flavor.

A Declarations of relationships and interdependencies with
other methods and flavors.

Component ftavors
The following example creates a new flavor, called
new-mouse-sensitive-window, that inherits the instance variables
and methods from four flavors in the tv: package:
(defflavor new-mouse-sensitive-window ()

(tv:basic-mouse-sensitive-items

tv:borders-mixin

tv:top-box-label-mixin

tv:window))
Some flavors are designated by convention as base flavors, serving
as the foundation for building a flavor family. Other flavors are
designated as mixin flavors, serving to implement particular
features that would be required for other flavors. User-defined
flavors are constructed by combining these base and mixin flavors
into the exact flavors required for the application.

Complex flavor combinations can be defined. Figure 11 shows
the relationships among the various base and mixin flavors
specified in the definition of the flavor tv:menu. In this kind of
nonhierarchical structure, the flavors being inherited can overlap.
The Flavor System takes care to eliminate redundancy by
including a subflavor the first time it appears in a depth-first
traversal of the structure but ignoring it on subsequent
occurrences.

The Flavor System allows you to specify interdependencies among
flavor definitions. Certain flavors can be specified as required for
the definition of another. Then, if the required flavors are not
included as a result of the inheritance mechanism, they are added
explicitly.

42

Symbolics 3600 Technical Summary Software: Languages

Figure 11. The inheritance
network of the flavor tv:menu
built by combining many
component flavors.

menu-execute-mixin sheet

essential-window

margin-hacker-mixin

essential-label-mixin

essential-
basic-menu €xpose
label-mixin
borders-mixin essential-
activate
top-box-label-mixin essential-
set-edges

basic-scroll-bar

minimum-window

menu

Copyright © 1983 Symbolics, Inc.

Instance variables

The instance variables hold local state information for an
instance. The Flavor System provides time-saving mechanisms
for managing instance variables. Initial values can be assigned
automatically as part of the process of creating the instance or
can be supplied explicitly by the user as part of the call to the
constructor that creates the instance.

The instance variables can be declared as internal or external to
the instance. The Flavor System automatically provides accessor
methods for instance variables whose values are available
externally and mutator methods for instance variables that can
be changed by other parts of the program.

43

Symbolics 3600 Technical Summary Software: Languages

Methods

Methods are function definitions that implement the operations
defined for each flavor. Methods can be defined directly for a
flavor or can be inherited from component flavors. Since
inherited methods might well conflict with requirements for a
flavor being defined, the Flavor System provides a means for
specifying how to create a combined method that combines all of
the inherited methods specified in component flavors.

The Flavor System provides mechanisms that allow methods to
be combined in different ways. One method can completely
override an inherited method. The order in which methods of
the same name are performed can be declared. An inherited
method can also be executed conditionally, depending on the
flavor declaration.

Signalling and Handling Conditions
The condition system provides the mechanism for detecting and
responding to exceptional events that occur during execution.

An event is "something that happens" during execution of a
program. It is some circumstance that the system can detect,
like the effect of dividing by zero. Some events are errors —
which means that whatever happened was not part of the
contract of a given function — and some are not. In either case,
a program can report that the event has occurred, and it can find
and execute user-supplied code as a result.

The reporting process is called signalling and subsequent
processing is called handling. A handler is a piece of
user-supplied code that assumes control when it is invoked as a
result of signalling. The 3600 software includes default
mechanisms to handle a standard set of events automatically.

The condition system for reporting the occurrence of an event is
implemented using flavors. Each standard class of events has a
corresponding flavor called a condition. For example, occurrences
of the event "dividing by zero" correspond to the condition
sys:divide-by-zero.

The mechanism for reporting the occurrence of an event is called

414

Symbolics 3600 Technical Summary Software: Languages

signalling a condition. The signalling mechanism creates a
condition object of the appropriate flavor. The condition object is
an instance of the flavor. The instance variables for the
condition object contain further information about the event,
such as a textual message to report and various parameters of the
condition.

Handlers are pieces of user or system code that are applied to a
particular condition. When an event occurs, the signalling
mechanism searches all of the currently available handlers to find
the one that corresponds to the condition. The handler then
accesses the instance variables of the condition object to find out
more about the condition.

The condition system provides flexible mechanisms for
determining what to do after a handler runs. The handler can
try to proceed, which means that the program might be able to
continue execution past the point at which the condition was
signalled, possibly after a user repairs the problem. Any program
can designate restart points. This facility allows a user to retry
an operation from some earlier point in a program.

Inheritance mechanisms in the Flavor System allow you to design
conditions that are very specific to a particular set of
circumstances and others that are more general. Groups of
similar events can be handled in a consistent way by a related
family of condition flavors. For example,
fs:file-operation-failure inherits behavior from fs:file-error.
You choose the level of condition that is appropriate for a
program to handle according to the needs of a particular
application.

Macros: Extending the Language

Most languages, have afixed set of syntactic constructs. In
Zetalisp, however, you can add constructs to suit particular needs
or tastes, or to tune the language to a particular application, by
creating a Lisp macro. Lisp provides tools to make writing
macros easy and convenient.

Macros in Zetalisp are different from macros in traditional
languages — rather than manipulating text, they manipulate the

45

Symbolics 3600 Technical Summary Software: Languages

structure of the program. A Lisp program is made of Lisp data
structure, with lists, symbols, numbers, and so on. A Lisp macro
is a function that manipulates the structure of a program. It
translates the syntax that programmers invent for their extensions
into existing Lisp constructs.

When building a large software system in Lisp, programmers
typically use macros to create language extensions that have
specific features useful for their system. Then they write the
application in this extended language. Specialized languages have
been built on Zetalisp for such diverse purposes as computer
graphics, digital signal processing, expert problem solving, and
VLSI circuit design.

Access to System Subprimitives

Zetalisp provides unrestricted access to the lowest levels of the
software system and the processor. A special set of functions,
called subprimitives, can be used to manipulate internal data
structures and deal with levels lower than the Lisp language
itself. Many of the fundamental functions and facilities of Lisp
are written as Lisp programs that call these subprimitives. While
it is rare that user programs need to use these facilities, they are
accessible.

Common Lisp Compatibility
A subset of Lisp, called Common Lisp, is being defined by a
joint industry/university project group. This group consists of
designers of several existing Lisp dialects.

The goal of the Common Lisp designers is to provide portability
between different Lisp dialects of Maclisp descent. Any program
written entirely in Common Lisp runs correctly in any of these
dialects. Common Lisp is intended to be very stable; only
well-tested extensions will be accepted into Common Lisp.

Symbolics is strongly committed to supporting this standard.
Common Lisp is a proper subset of Symbolics Common Lisp.

Although the Common Lisp standard allows programmers to

declare data types at compile-time, this is only for the benefit of
software running on traditional computers. The 3600’s run-time
data-type checking in hardware makes this practice unnecessary.

46

Symbolics 3600 Technical Summary Software: Languages

Symbolics Common Lisp will be supported on the 3600 after the
definition of Common Lisp is frozen. All Zetalisp features will
be preserved as new features are added.

Other Supported Languages and Systems
In addition to the native Zetalisp language, Symbolics supports
Interlisp and FORTRAN 77. Programs written in these
languages can be executed on the 3600.

LIL (Lisp-like Implementation Language) is the systems
programming language for the front-end processor (FEP)? and
the 3600 console. Interrupt service routines and other
input/output programs are written in LIL.

MACSYMA, a symbolic mathematical system, is also available
for the 3600.

Interlisp Compatibility Package

The Interlisp Compatibility Package is part of the 3600 systems
software. It allows Interlisp-10, Interlisp-VAX, and Interlisp-D
programs to run in the Zetalisp environment. The package
provides tools for intermixing Interlisp and Zetalisp code and for
incrementally converting Interlisp code into Zetalisp code. This
means that as Interlisp programmers adjust their programs, they
will be able to take advantage of the advanced features and
capabilities of the 3600 and its extensive Zetalisp environment.

The Interlisp Compatibility Package includes tools for automating
the code-conversion process. Programmers first convert an
Interlisp source file into a file that can be loaded into the
Zetalisp environment. They then load a group of functions that
implement Interlisp operations. In this way, the Interlisp
Compatibility Package maintains the functionality and
appearance of the original Interlisp program, while allowing it to
run in the 3600’s environment.

The Interlisp Compatibility Package includes support for the
following Interlisp features.

2The FEP is an MC68000-based computer system between the 3600 and the
MULTIBUS. (See page 105.)

47

Symbolics 3600 Technical Summary Software: Languages

A Low-level pure Lisp functions including atom, list, and string
manipulation

A Complete array manipulation capabilities

A LAMBDA, NLAMBDA, PROG, and other special forms

A Semantics for Blocks, especially Specvars and Localvars
compiler declarations

A The pattern-match compiler

A All types of macros

X Such Clisp constructs as the iterative statement operators
(including user extensibility), Changetran, If-then-else, and
Printout

A All of the Record package

A The Lambdatran package

The 3600 provides equivalent functionality for many Interlisp
features, including the window system, readtables, input/output
streams, network tools, the Break package, and dribble files.?

Comparable facilities are provided on the 3600 for some of the
Interlisp features that are not directly supported by the
compatibility package. The functionality of the Interlisp
structure editor, Programmer’s Assistant, and Masterscope is
realized on the 3600 by the Zmacs editor, which "knows about"
Lisp syntax. FIXSPELL and ERRORX from Interlisp are
replaced by the error detection and correction tools of the
Display Debugger and by the Inspector. Interlisp’s spaghetti
stack and stack-manipulation functions are supplanted by
Zetalisp’s stack groups and flavors.

The Clisp infix notation of Interlisp is not supported. LISPX
and EVAL-QUOTE notation from Interlisp are replaced by
editing and reevaluation of expressions in the Zetalisp Rubout
Handler. Upper/lower case independence in Interlisp is
supported in Zetalisp by retaining lower case representation for
any specified character or string.

3Unsupported features include the DWIM system, terminal tables, and the
Interlisp File Package.

48

Symbolics 3600 Technical Summary Software: Languages

FORTRAN 77 Tool Kit

The FORTRAN 77 Tool Kit allows programmers to develop,
debug, and run FORTRAN 77 programs on the 3600. It
implements the full ANSI FORTRAN 77 Standard (FORTRAN
X3.9-1978). It supports earlier dialects to the extent that they
are compatible with FORTRAN 77. The Symbolics 3600
FORTRAN implementation integrates editing and source-level
debugging facilities, providing FORTRAN programmers with the
supportive development and maintenance environment of the
3600.

FORTRAN on the 3600 is different from FORTRAN on any
conventional computer, personal or mainframe. Some of these
differences are inherent in the Lisp Machine, for example,
data-type checking. Others, like incremental compiling, provide
for greater programmer productivity than is available from other
systems.

The Tool Kit consists of:

A A compiler for the full FORTRAN 77 language, together
with extensions of particular use to 3600 programmers.

A Extensions to Zmacs, the standard 3600 text editor, to
support editing of FORTRAN programs.

A A Lisp-compatible rrun-time library, permitting full access to
the 3600 input/output facilities, including access to files on
other hosts via network connection.

A Compatibility with: the Display Debugger, permitting
debugging of FORTRAN 77 source code.

One characteristic of the Lisp Machine environment is that
programs can be compiled and executed in an editor buffer. This
facilitates incremental compilation — the process of compiling
selected routines of a large system — which greatly speeds up
the program-development process. The FORTRAN 77 Tool Kit
makes this feature available to FORTRAN programs. It also
brings the benefits of interactive programming to FORTRAN
programmers. On the 3600 they can test small functions
thoroughly without waiting for lengthy relinking.

The FORTRAN 77 compiler produces Lisp code, which is in
turn compiled by the 3600’ standard Lisp compiler. The Lisp

49

Symbolics 3600 Technical Summary Software: Languages

code produced by the compiler is an intermediate object
language, incidental to producing machine code. All debugging is
at the FORTRAN source-code level. Thus, a FORTRAN
programmer need not think in terms of Lisp code while dealing
with a FORTRAN program.

After compiling, FORTRAN routines are available for execution.
They do not have to be linked and loaded as in conventional
FORTRAN systems. Making small changes to large FORTRAN
programs is therefore easier and faster.

Because they are compiled into Lisp code, FORTRAN programs
become Lisp functions in the Zetalisp environment and are
invoked with Lisp function calls. Calls in the FORTRAN
program to FORTRAN library subroutines are actually calls to
predefined Lisp system functions. FORTRAN programs can use
any Lisp functions that have an appropriate calling interface.
This compatible intermingling provides great flexibility, allowing
a programmer to implement a particular routine in either Lisp or
FORTRAN, whichever is more suitable to the specific situation.

The FORTRAN 77 package provides strong hardware data-type
checking between logical, integer, and real data. This reduces
data-equivalencing errors. This powerful feature uncovers bugs
caused by uninitialized data which would remain hidden in other
FORTRAN implementations.

All integers used in FORTRAN 77 are immune to overflow, in
that infinite-precision integers (bignums, see page 31) are
supported. In concert with infinite-precision integers, the
FORTRAN 77 Tool Kit supports formatted output of large
integers. Format specifications such as "I1200" are meaningful.

LIL

LIL is the Lisp-like Implementation Language developed by
Symbolics. It is designed to run on the MC68000-based front-end
processor (FEP) and other processors associated with Lisp
Machine systems. LIL is an implementation language in that its
semantics are a close match to the macroinstruction sets of
conventional processors like the MC68000. A typical application
of LIL is the writing of the FEP’s interrupt handlers for
MULTIBUS devices. (See page 105.)

50

Symbolics 3600 Technical Summary Software: Languages

Like the programming language Pascal, LIL is strongly typed.
This means that the type of each form must be known to the
compiler. This type may not change while the program is
running. LIL has user-defined types but no user-defined generic
operations. Following is a type-definition example:
(deftype str-type

(structure: ()

(next code-symbol)

(kind symbol-kind)

(minimum~loc word)

(maximum-loc word)))

The syntax of a LIL source program is a list. The LIL compiler
reads the source using the Lisp reader. Thus each LIL
declaration, statement, or expression is one of two things:
A Atom

A symbol or a constant
A Form

A parenthesized list of atoms or forms
This requirement ensures that the syntax is similar to the
parenthesis notation of Lisp. In LIL, however, symbols, atoms,
and lists are syntactic units only. They are not a part of LIL’s
semantics. For example, LIL has no operations for performing
computations on these entities. Like Lisp, LIL is an expression
language. Most LIL forms return values that can be used in
expressions.

Variable references in LIL are lexically scoped; function and type
declarations must be at the top lexical level. In order to give
programmers access to the underlying machine, LIL program
units, such as psects, modules, and global variables, can be tied to
physical addresses.

Lisp functions and a Zmacs editor interface are provided as
support for LIL programmers. The standard defsystem and
make-system functions support LIL code. In addition,
"assembler-like" output listings are available as output options
through both the Lisp and the Zmacs interfaces. The LIL
compiler produces code that is routed directly to the linker.
From the linker, code can be sent to relocatable output files, to a

571

Symbolics 3600 Technical Summary Software: Languages

PROM (programmable-read-only-memory) burner, or to the
front-end processor (FEP).

MACSYMA

MACSYMA for the 3600 is a large, highly sophisticated software
system for symbolic mathematical manipulation. The system
handles symbolic mathematical expressions, following the rules of
algebra and calculus, and produces symbolic closed-form
solutions. MACSYMA serves as an expert mathematics assistant
to applied mathematicians, scientists, engineers, and educators.

The implementation of MACSYMA on the 3600 represents the
culmination of a long software development effort that began in
the early 1960s. Over 100 programmer-years of software design
and implementation effort have produced a comprehensive
package with a range of capabilities, including:

A Symbolic integration

A Symbolic differentiation

R Linear or polynomial equation-solving

A Algebraic simplification and factoring

A Expansion of Laurent and Taylor series

A Solution of differential equations

A Computation of Poisson series

A Tensor and matrix manipulation

A 3-dimensional curve plotting

MACSYMA on the 3600 has three main advantages over earlier

implementations.

A Users work within a 256 Mword (1 Gbyte) virtual address
space. This removes a traditional frustration — inadequate
memory — for MACSYMA users.

A The entire machine is made available to the user. With no
timesharing, interaction with MACSYMA is fast.

A On the 3600, users can take advantage of the fast,
high-resolution display to generate detailed visual graphs of
symbolic functions (see figure 12).

52

PLOT3D function.

PROPEHIES
GOt UMIN

CLfAN
SN -SIALE

Symbolics 3600 Technical Summary Software: Environment

3600 Software: Environment

The 3600 does not have an operating system in the conventional
sense, but all of the functionality provided by an operating
system is provided by some part of the software. This is because
the software is designed as an integrated Lisp environment for a
single user, rather than as a timesharing system that has to divide
the computer between several users and protect each user from
the others.

On the 3600, no rigid distinction exists between the operating
system proper and fixed system utilities. System functions and
utility functions are integrated and intermingled. For example,
parts of the Zwei editing system underlie both the Zmacs editor
and the Zmail facility. Unlike conventional operating systems,
the 3600 environment encourages users to extend the behavior of
most utilities with their own Lisp code.

Hence, the software provides a multiprocessing virtual operating
system functionality with a structure designed to benefit the Lisp
environment. This stands in contrast to building a conventional
operating system and then trying to create a Lisp system on top
of that.

This chapter describes the main components of the 3600 software
environment.

The Window System: The User’s Perspective
The bit-mapped display screen is managed by the window system.
Windows are rectangular regions of the screen that can be fully
visible, partially visible/partially covered, or wholly covered by
other windows, like pieces of paper on a desk. Every interaction
that you have with the 3600 occurs in a window. The screen
always contains one or more windows.

You can use windows to control many activities at once. Each
activity is represented by a different window. Switching between
activities is accomplished by simply clicking on the activity’s
window with the mouse, selecting an item from a menu, or
typing on the keyboard. When one window is partially covered
by another, you can click on the part of the window that is
visible, and that window will come to the top. No state
information is lost when switching between windows.

53

Symbolics 3600 Technical Summary Software: Environment

Rapid context-switching is important in many applications. In
developing programs, you can split the screen between an editor
window in the top half of the screen and a Zetalisp interaction
window in the bottom half. When you find problems with your
code, choose the editor window and start editing the corrections.
After editing, one simple Zmacs command incrementally compiles
those parts of the program that have changed. Then return to
the Zetalisp window and try the program again.

The configuration of windows is controlled with the Screen
Editor, an interactive system that lets you create, kill, move, and
reshape windows.

A Hierarchical Window System

The window system is hierarchical: in the same way that the
screen can be divided up into windows, a2 window itself can be
further subdivided into smaller windows. A window that is
divided in this way is called a frame, and the subwindows are
called panes.

The size of a frame can be changed. The panes of the frame
change their size within the new dimensions. The individual
panes within a frame can also be manipulated.

Menus and Choices

Users interact with the window system by selecting options from

menus which appear on the screen. Menus are lists of

mouse-sensitive choices, surrounded by a border. The system has

several styles of menus, including the following common ones.

A Momentary menu
Each item is a possible choice. Positioning the mouse cursor
over an item and then clicking the appropriate button makes
the choice. Once the choice has been made, the menu
disappears. Moving the mouse cursor outside the menu border
without having made a choice also makes the menu disappear.
(See figure 13.)

A Choose-variable-values menu
Each line presents a number of possible values of a particular
parameter. The presently selected value appears in bold face.
Each of the values is mouse-sensitive. Usually clicking on a

56

Symbolics 3600 Technical Summary Software: Environment

Figure 13. Example of a Windows This window Programs
momentary menu. X Attributes Lisp
Select Refresh Edit
Split Screen Bury Inspect
Layouts Kill Mail
Edit Screen Reset Font Edit
Set Mouse Screen Arrest Trace
Color Window Un-Arrest Emergency Break
Hardcopy
Figure 14. Example of a

choose-variable-values menu.

t t c 1.

Current font: CPTFONT

More processing enabled: Yes No

Reverse video: Yas No

Vertical spacing: 2

Deexposed typein action: Wait untl exposed Notify user
Deexposed typeout action: Wait untl exposed Let it happen Signal error Other
("Other" value of above): NIL

ALU function for drawing: Ones Zeroes Complement
ALY function for erasing: Ones Zeroes Complement
Screen manager priority: NIL

Save bits: Yes No

Label: Lisp Listener |

Width of borders: 1

Width of border margins: 2

Done £} Abort g

different value selects it. These menus have explicit finishing
commands, labeled Do It and Abort. You must select one of
these in order to make the appropriate action occur and the
menu disappear. (See figure 14.)

The Mouse Documentation Line

Near the bottom of the main screen is a one-line, inverse video
window called the mouse documentation line. When the mouse
is positioned over an item of a menu, the mouse documentation
line indicates, for each of the three buttons, what would happen
if that button were clicked. As the mouse is moved from one
window to another, or as windows pop up or change
configuration under the mouse, the mouse documentation line

57

Symbolics 3600 Technical Summary Software: Environment

changes to signal the new meaning of the mouse buttons in the
new context.

Figure 15. The mouse
documentation line and the
status line.

Create new window. Flavor of window selected from a menu.

81,12,83 063:31:11 RORDS USER: Tyi__

The Status Line

Below the mouse documentation line is the status line, which

displays the following:

A The date and time

A The name of the user logged into the machine

A The state of the current process: whether it is running,
paging, stopped, waiting for keyboard input, or waiting for
any of various other things to happen

A The current package in which Lisp expressions typed in from
the keyboard will be read

A Notification of file transfers in progress, with the name of
the file and the percentage being read or written

A The keyboard idle time

Multiple Display Screens

More than one bit-mapped display screen can be attached to the
3600. The window system works equally well on all of them.
All of the facilities provided by the window system, including
menus, frames, and the Screen Editor, work on any display,
including color displays. The mouse tracks on any screen.

58

Symbolics 3600 Technical Summary Software: Environment

The Window System: The Programmer’s Perspective
Programmers use the window system to manipulate windows,
implement graphics, perform input/output operations, and create
a consistent graphical user interface to a program.

The window system :is implemented with flavors (see page 38).

Each window is a Zetalisp object, an instance of some flavor. To
manipulate a window, a program sends it messages. Messages
perform the following kinds of tasks:

A Examine and alter the shape and position of a window

A Control the appearance of the borders and the label

A Manage stream and graphical input/output

A Control the cursor position

A Change the type font and control the interline spacing

A Insert and delete lines and characters

Primitive Graphics Operations

Windows also understand a large set of messages which perform
primitive graphics operations (in color or black-and-white), such
as drawing points, lines, filled-in rectangles, filled-in triangles,
regular polygons, circles, curves described by a sequence of line
segments, and cubic splines.

Another important graphics primitive provided is bitblt (known
as RasterOp on some other systems), which moves arbitrary
rectangular sections of a picture between arrays and windows or
within windows, combining bits using a logical operator. For
high speed, bitblt, rectangle, and triangle drawing are
implemented with microcode support.

Choice Facilities
Using interactive graphics techniques, the 3600 provides a variety
of choice facilities. By calling simple predefined functions,
programmers can create windows that allow users to select items
in a number of different ways. The following are some of the
3600’s choice facilities.
X Momentary menus
Momentary menus appear on the screen with a list of choices.
The user does not'have to make a choice, however. By
moving the mouse:outside of the menu, the user can make the
menu disappear. Many options are provided.

59

Symbolics 3600 Technical Summary Software: Environment

A Pop-up menus
Pop-up menus are like momentary menus except that they do
not disappear until the user makes a choice. When the choice
is made, the menu disappears and the chosen item is executed.
The value of that object is returned. One type of pop-up
menu is supplied with defaults and is easy to invoke. The
second type can be customized.

A Command menus
Command menus are used when you want to pass a command
to a controlling process from a menu. The command is sent to
the process via an input/output buffer which may be shared
with other windows or processes. This way, the controlling
process can be looking in the buffer for commands from
several windows as well as for keyboard input. Optional
features are available.

A Dynamic item list menus
A dynamic item list menu is provided for menus whose items
change over time. One message-passing operation updates the
item list.

A Multiple menus
Multiple menus are provided for situations in which the user
can select several items at a time. These can be displayed in
inverse video. Special choices allow the user to specify
operations on all the selected items. Both momentary and
pop-up menus are available.

A Multiple choice menus
This facility displays a menu in which each item is associated
with several yes/no choices, in choice boxes. This facility is
supplied with many reasonable defaults.

A Choose variable values
In this kind of menu, each item is associated with a value
printed next to it. By selecting an item with the mouse, the
user can alter the value of the item. Many defaults are
supplied, yet facilities for customization are also available.

A User options
The user option facility is based on the choose-variable-values
facility. It is used to keep track of options to a program of
the sort that users would want to specify once and then save.
The option list can be associated with particular programs.

60

Symbolics 3600 Technical Summary Software: Environment

A Mouse-sensitive items

This facility is similar to the choose-variable-values feature, but
it is different in the way it is accessed by a program. This
facility lets areas of the screen be sensitive to the mouse.
Moving the mouse into such an area causes a box to be drawn
around it. At this point, clicking the mouse invokes a
user-defined operation. Many different kinds of
mouse-sensitive items can be specified.

A Margin choices

Windows can be augmented with choice boxes in their margins.
Choice boxes give the user a few mouse-sensitive points which
are independent of anything else in the window. Margin
choices can be added to any flavor of window in a modular
fashion.

Scrolling

Figure 16. The double-arrow
symbol indicates that scrolling
mode is in effect. The
thickened line is a proportional
representation showing the
current screen’s size and position
in the entire buffer.

(DEFPROP :CHRARACTER-OR-NIL
(CHOOSE-VARIABLE-VALUES-CHA
s CHOOSE-VARIABLE-VALUES-CHA
NIL NIL NIL “Click left to
CHOOSE-VARIABLE-VALUES-KEYW
(DEFUN CHOOSE-VARIABLE-VALUES-CHARAC
(FORMAT STREAM (IF VALUE “~:aC"

Many windows in the system respond to scrolling commands,
invoked by moving the mouse cursor into one of the margins of
the window (see figure 16). The software interface for scrolling
is a flavor mixin (see page 42) and is available to use in any
program. This makes it easy to create windows that handle
scrolling.

61

Symbolics 3600 Technical Summary Sofiware: Environment

Creating New Windows with Mixin Flavors

Many programmers construct the user interfaces to programs by
using the Flavor System to combine their own flavors with others
chosen from the window system’s extensive library (see page 42).
The private component flavors control or modify the behavior of
predefined flavors to meet the needs of the specific program.

For example, you can create flavors to control the way a window
redisplays or how it responds to shaping. You can write and
send messages that augment the predefined window-system
messages.

File Systems

Symbolics computers use disks for file storage. Disks attached to
3600s contain the Lisp Machine File System (LMFS). Both local
and remote file systems are supported on the 3600.

::;:::s 17. Kinds of file Computer System
3600 Other Computer

Local
File System Local LMFS P
(on 3600)
Remote
File System Remote
(other Remote LMFS UNIX, VMS,
computer on TOPS-20, ...
the Ethernet)

The Lisp Machine File System

The Lisp Machine File System (LMFS) can be used in a local

file system, in a remote file system, or both. Features of the

LMEFS include:

2 Conservative, robust design for maximum reliability

A Tree-structured directories

A File names of any length

A Arbitrary user properties attached to a file and used by user
programs

A Version numbers

62

Symbolics 3600 Technical Summary Software: Environment

A Generation retention counts for automatic deletion

A Soft-deletion and expunging of files
R Deletion just makes a file invisible
A Undeletion can be used to recover it
R Expunging eliminates a file entirely from the disk

A Noncontiguous disk-block allocation

A Large number of directories

A Multiple disk support
R File system partitions (parts of a file system) can reside on

different disks

A Reliable file salvager that can be run while the file system is
in use

A Flexible backup facilities providing complete, incremental,
and consolidated :dumps

A Demountable disks for offline storage

A Links to other files in the file system

Up to four 474-Mbyte disks can be added to a 3600 with a single
input/output board: to create a large file system.

File System Reliability

The file system is characterized by a conservative, robust design.
All file system information is redundantly stored so that loss of a
single block of the disk cannot damage more than one file.
Directories can be completely recreated from information stored
in the file headers of the files. Every block of data in the file
system is marked with a unique identifier, so that the file system
can check to make sure that when it has read a block, it has
obtained the right data.

The file system is written using a transaction discipline so that
users can continue using it after a crash without running the
Salvager. The Salvager is provided for long-term recovery of
"lost" blocks, rebuilding damaged directories, and otherwise
automatically fixing file system problems. It is simple to use and
can be run even while the file system is operating.

A magnetic tape backup system is also provided, supporting
complete, incremental, and consolidated dumps. Because of the
software’s flexibility, it is possible to route backup to any tape
drive on the Ethernet, as long as it is attached to a

63

Symbolics 3600 Technical Summary Software: Environment

Symbolics-supported host operating system (for example, 3600s
and computers running UNIX).

Remote File Systems

With the 3600’s remote file system capabilities, users can access

the file systems of other computers over the Ethernet. These

remote file systems can be based on 3600s or timesharing

computers. Many remote file systems can exist on a given

network. Among the features of the 3600 remote file system

software are the following:

A Generic file system access is provided across the Ethernet.

A Uniform pathname conventions are followed.

A Pathnames are implemented as flavor objects for flexibility.

A Directory editing is supported via the File System Editor
and Dired.

A Wildcard matching and automatic file-name completion are
provided for supported file systems.

Any command that accepts a file name, or any function that
takes a file name as an argument, can accept a file name for any
file system, in that system’s own syntax. Thus, you can read files
into editor buffers, or read them from any program, specifying
the file name in whatever syntax the file server uses. Files from
different servers, all with different naming conventions, can be
accessed simultaneously. For example, a simple copy command
can transfer a file between any two network hosts.

Users’ programs can take advantage of the generic file

system features. Files are instances of generic objects
implemented using the Flavor System (see page 38). The result
of opening a file is also an object, with all the properties of a
stream (see page 35), plus other properties specific to the device
it is on.

The File System Editor works on any supported file system, local
or remote. File systems currently supported include those under
VAX/VMS and UNIX (Berkeley Virtual).

64

Symbolics 3600 Technical Summary Software: Environment

Support for Logical File Names

In order to simplify the writing of portable software, the file
system permits a distinction between a logical name for a file
and the actual name of a file, given in the user-defined site file.
Programmers can write all file input/output routines using the
logical file name in their programs. The actual pathname of the
file can be stipulated differently at a number of sites.

For example, in Symbolics system software, files are specified
using logical host names in the following format:
host: directory; file-name type version

The actual pathname of the same file is specified in the
user-defined site file. Thus, the actual name of a file on the
3600 would be specified in the following format:
host:>directory-path>file-name.type.version

The actual pathname: of a file on a UNIX system would be
specified differently:
host:/directory-path/file-name.type

Virtual Memory: The Programmer’s Perspective
Virtual memory management is an integral part of the 3600
design. Users are provided with a very large (256-Mword or
1-Gbyte) virtual memory address space. It is not organized on a
per-process basis. Rather, the virtual memory is split up into
areas by the area feature of Zetalisp, and further divided into
Lisp objects. System software in compiled form occupies
approximately 4 Mwords of virtual memory. The rest of the
address space is available for system tables and user programs.

Virtual memory is managed by a paging algorithm that
approximates the least-recently used (LRU) page-replacement
principle, using the standard clock algorithm. Normally, users do
not need to be concerned with its operation. The system does,
however, provide certain options.

R Paging policy can be either the normal area access or
sequential access. Sequential access provides a
"double-buffering" capability, since the paging system
automatically prefetches sequentially accessed pages.

A For high-speed operation, critical pages can be wired

65

Symbolics 3600 Technical Summary Software: Environment

(resident) in main memory, thereby avoiding the replacement
algorithm.4

A The swap-in quantum (number of pages to prefetch) is
adjustable on a per-area basis.

Hardware, microcode, and system software share in the task of
virtual memory management of the 3600. (For more detail, see
page 94.)

Scheduling Processes
The 3600 features an efficient scheduler which provides a

number of services:

A Real-time processes, wired in main memory
A Fast response for interactive activities

A Background activities

A Priority setting under user control

A number of processes can run concurrently. The scheduler
implements processes with the stack group coroutining mechanism
of the Zetalisp language. A process can wait for any arbitrary
condition to occur. To wait for a condition, a process passes the
scheduler a waiting function. The scheduler periodically calls
this function, and as soon as the function returns a true value,
the process is allowed to proceed. This is the fundamental
blocking mechanism; some higher level facilities, such as sleeping
(for a given amount of real time) and locks (binary semaphores),
are also provided.

Programmers can also construct more complex multiprocessing
control structures. It is easy for processes to communicate data
to one another, since they all exist in the same Lisp world.
Programmers can build any kind of mailbox, queue, or other
multiprocessing facility. Some simple ones are supplied by the
system.

The Lisp software environment uses processes heavily.

A One process reads keystrokes from the keyboard, handling
interrupt characters and directing input to appropriate
windows.

4In other systems this is called "locking" or “fixing" pages.

66

Symbolics 3600 Technical Summary Software: Environment

2 Two processes control the reception and transmission of
packets on the network.

R The network remote login programs (Telnet and
Supdup) work by splitting into two processes: one to
transmit to the foreign host, and one to receive from the
foreign host.

Users rely on processes as well. When they create a new window
to run an interactive: system, such as a Lisp Listener window or a
Zmacs window, a new process is created to run that program.

Lisp programs deal with processes by calling a function to create
a process. The programs then send messages to the process to
start, stop, examine, and alter the state of the process. A simple
Lisp function is provided (process-run-function) that calls
another function on some arguments in a newly created process.
Any time a program requires multiprocessing, it can easily spawn
any number of new processes to run concurrent programs. The
scheduler is genuinely preemptive; it is co-called periodically by a
hardware-generated interrupt. The time-slice period is under user
control.

Support for Real-time Processes

Users of the 3600 can create efficient real-time processes to
control external devices. This is because on the 3600 a real-time
process is a special object. The scheduler treats real-time
processes differently so that such processes can respond quickly
to external stimuli, such as real-time clocks or device interrupts.

As one of its special features, a real-time process never takes
page faults. All of its code and data structures are wired in
main memory. In addition, the 3600 processor maintains a
special hardware stack buffer, so that real-time processes can run
without having to save away the stack buffer of the main
process. Hence, a real-time process can be started quickly
because the hardware:does not have to perform a full process
switch.

The 3600 provides other kinds of support for devices that require
fast response. For example, microcode tools are provided for the
support of devices on the L bus. Interrupt handlers for

67

Symbolics 3600 Technical Summary Software: Environment

MULTIBUS devices can be written in the LIL language and run
on the FEP.

68

Symbolics 3600 Technical Summary Software: Network Communications

3600 Software: Network
Communications

This chapter surveys Zmail, Converse, the Symbolics Auto-dial
Feature, and other network products.

Electronic Mall: Zmail and Converse
In a modern computing environment, powerful electronic mail
facilities are a necessity. On timesharing systems,
intercommunication: is limited to users of the same machine
unless that machine: is on a network with other computers. The
new generation of electronic mail systems allow users on different
network-linked computer systems to communicate with the same
ease as users on a single machine.

Zmail is an elaborate interactive network-based mail facility.
Zmail's command interface is easy to learn. You can start by
learning a basic set:of commands, accessible through a user
interface based on graphical windows and menus. Zmail provides
many more advanced and powerful commands to help you keep
track of and handle large amounts of mail.

New mail from other users is shipped to a user’s inbox. When
recipients read their mail, the contents of their inbox are
appended to their default mail file. Each message in the default
mail file can either be deleted, replied to, or stored in a mail file.
(See figure 18.) Messages can be automatically filtered on the
basis of certain keywords in the message, on the contents of the
message header, or on the basis of certain properties of the
message (for example, whether it has been answered).

Reading and Answering Mail

When you peruse through mail with Zmail, the top of the Zmail
window contains a summary of the messages in their mail file
(see figure 19). A summary line of descriptive text is shown for
each message. One of these messages is the currently selected
message, and its summary line is marked with an arrow. In the
bottom of the Zmail window is the actual message, in its entirety
if it fits. Scrolling is provided for long messages.

Between the summary and the message is a menu of commands
which perform the following operations.
A Get next message

69

Symbolics 3600 Technical Summary Software: Network Communications

Figure 18, Zmail input and Ethernet
output diagram. /_\

Incoming mail \

o
-

~

2.

Delete Send message or
| message _\reply to message
User

Filter message

Mail file 1 Mail file 2 c v . Malil file n

A Get previous message

A Delete a message

A Undelete a message

A Reply to a message

A Jump to a message

A Move a message to a buffer

A Change the keywords associated with a message

A Survey messages

A Sort messages

A Get incoming mail buffer

A Send new mail

A Invoke a menu of operations to perform on a group of
messages: Delete, Type out, Move, Redistribute, Concatenate,
Find strings, Forward, Reply to, Put keywords on or take
them off

A Execute an auxiliary command: Whois or ViewFile

70

Symbolics 3600 Technical Summary Software: Network Communications

A Edit user’s Zmail profile
A Change the window configuration of Zmail
A Save or expunge mail buffers

You can move through messages by using the Next and Previous
menu commands, by pointing the mouse cursor at a line in the
summary window and. clicking the mouse, or by typing
single-character commands on the keyboard.

When replying to mail, you can see the message you are replying
to in the top half of the window. The reply goes in the bottom
half.

Full Zmacs editing capability is provided in Zmail. In the Zmail
environment, the editor is extended with special mail-oriented
commands.

Selecting and Filtering Mail

Several mail files can be read at a time, and you can move
messages from one mail file to another. This is so mail about
different topics can be saved in different mail files. You can also
select sets of messages on which some operation should be
performed. For example, you can select a set and then delete all
the messages in the set, or move them all into a mail file.

The set can be specified either by pointing at its lines in the
summary window or by using filters. A filter is a set of criteria
used to determine whether a message should or should not be
accepted into a set. You can filter messages based on such
attributes as the sender, the recipients, the time of sending, the
contents, or whether they have replied to the message. You can
also combine these criteria using AND, OR, and NOT predicates
to specify complex filters that discriminate between messages.
User-written Lisp programs can also be used as filters.

Customizing Zmail

Zmail is readily customizable. You can control the layout of the
display, the format of paper copies of mail files, and many other
options. As discussed, you can define special-purpose filters to
access specific categories of messages. The contents of

Zmail menus and the defaults for commands with options can be

71

Symbolics 3600 Technical Summary Software: Network Communications

Figure 19. Zmail window in a
mail-reading state.

> or Text
46: 24 15-Nov HHcM+Margo! in@MIT-MULTI Settinc the From: field
47: 26 17-Nov RHK+BUG-ZMRIL ZMAIL 9
48: 25 19-Nov Steve Pelaggi+scrc Time cards
49: 29 22-Nov dlw+ Exception handling
50: 48 22-Nov Min+Symbolics Foreign Distributorship
S1: 25 1-Dec DCP@SCH-HUEY-DU+network As most of you know by now, the land 1ines (SCRC<-->S
52: 67 4-Dec Jwalker+Hhit protocol for camera-ready copy
53: 16 5-Dec +whit Zmai | manual; NES manual
54: 12 7-Dec finkel-+Lang Society for Technical Communication
S5: 27 B8-Dec finkel+JWdalker Toolkit
56: 22 13-Dec whit+scrc Release 4.8 Beta-test Site Documentation review files
S7: 116 13-Dec whit+info-Iispnm,doc Documentation and Training Services project summaries
58: 8 15-Dec cec-*scrc Customer file
59: 59 19-Dec RWK~+bug-zmail What is incremental expunging?
68: 19 20-Dec JRYNE-+scrc, jean Prudential Open Enroliment
61: 11 28-Dec nuwav-<scrc Organization
62: 1?7 28-Dec pmiller+synmbolics CEC maintains CUSTOMERS.TEXT
63: 9 28-Dec nuwav+*scrc Conference
64: 28 28-Dec RHK+ Disappearing fonts
65: 13 29-Dec BSG+rn Ob ject-oriented programmning
66: 26 30-Dec _jwalker+diw documentation copies

® 67: 1S 30-Dec | inda+sch, scrc, spa,stx. *An Rdvanced Lisp-Based Engineering Horkstation®

Protile Guit Delete Undelete Reply
Configure Save ext] X Previous Continue
Survey Get inbox ump Keywords Mail
Sort Map over Move Select Other

Date: 30 Dec 1982 15:28:17-EST

tFrom: |inda at scrc-vixen

To: sch at scrc-vixen, scrc at scrc-vixen, spa at scrc-vixen, stx. at scrc-vixen
Sub_ject: *An Advenced Lisp-Based Engineering Horkstation®

Cc: linda at scrc-vixen

Copies of the above paper written by J.L. Kulp and David Schwarte
are available either through me or In the documentation files in the
|[Library. Please comment if so desired.

Regards,

| inda

Message
Zmal) SCRC:<JLH>JLH.BRBYL Hsg #6?7/67 (last) ()

17@5/ 197 JL : vi___

72

Symbolics 3600 Technical Summary Software: Network Communications

customized. Zmail makes it easy to customize these things
without having to understand how they are implemented, by
providing a display-based user-profile editor.

The Converse Utility for Interactive Messages

Interactive messages can be sent to other users on the network
using the Converse utility. When the system receives a message,
it pops up a window, displays the message in the window, and
prompts the recipient for a response. That user can then type a
message and it will be sent off to the original sender.

Distinguishing features of Converse include:

A Full editing capability when typing messages, including
extended commands

R Messages can be routed for wider distribution through Zmail
as well as to the immediate addressee

A Multiple, simultaneous conversations

Network Software
Extensive network software is available with the 3600, including
support for Ethernet local area networks and remote networks.

Ethernet Support
The 3600 offers complete support of the 10-Mbit/sec Ethernet, a
low-cost, highly reliable local area network. Features include:
A Packet-switching
A Carrier-sense, multiple access/collision detection
(CSMA/CD)
A Baseband transmission
R Coaxial cable connecting all network nodes

A main advantage of the Ethernet is the ease with which new
nodes can be attached to the net. The Ethernet transceiver is
hooked to a computer and attached to the coaxial network cable.
3600s, as well as other computers, can share the network.

Control of the Ethernet is distributed among the communicating
computers to eliminate the reliability problems of an active
central controller. The costs of a central controller are also
eliminated, making smaller networks more feasible.

The Symbolics Network System provides protocols for Ethernet

73

Symbolics 3600 Technical Summary Software: Network Communications

hardware. Lisp programs have full access to the facilities of the
network. Lisp functions are provided to open network
connections as a user or to handle incoming network connections
as a server. User programs can accept, reject, and close
connections, and transmit or receive packets. A network
connection can also be handled as an input/output stream, with
standard stream input and output message-passing operations.
Programmers can invent higher level network protocols or use
existing ones. The network control program provides
error-checking, flow-control, and retransmission, and maintains
the multiplexing and demultiplexing of the network into many
separate connections.

The Symbolics Network System also has provisions for the

following:

A Simple transactions: a single exchange of packets, with
acknowledgement, without forming a connection

A Uncontrolled packets, without flow control and
acknowledgement

A Broadcasting

A Automatic redistribution of routing information for
gateways

A Error reporting

Higher level protocols exist for the following functions:
2 Remote login

A File access

A Mail transmission

A Interactive messages

2 Finding out the users of a machine

A Finding out the current time

A Accessing remote printers and tapes

2 Opening a gateway to remote networks

A Network maintenance and testing

Network control programs also exist for VAX/VMS and UNIX
(Berkeley Virtual).

Local network cables can be extended up to 500 meters, with up
to 100 transceivers per cable.

74

Symbolics 3600 Technical Summary Software: Network Communications

Remote login

Standard software includes support for remote login -over
large-scale networks. For example, users can log in to other
Computers over a large-scale network from a 3600 console. The
3600 supports the standard Telnet remote-login protocol, as well
as the Supdup display-terminal protocol.

Symbolics Auto-dial Feature

The Symbolics Auto-dial Feature permits the direct connection of
3600 computers over standard telephone lines. This also allows
two 3600s that are part of different local area networks to
connect and act as a gateway between sites.

The Auto-dial Feature places Symbolics in direct digital

connection with all of its customers. This facilitates:

A Customer support

A Remote diagnosis of 3600 systems

A Exchange of such information as bug reports from customers
and patches from Symbolics

A Software and documentation distribution

High-level services previously available only to computers linked
on a local area network are provided between computers on
different networks. Services include:

A Remote file-system access

A Remote peripheral access to magnetic tape, disk, and printer
A Electronic mail and: real-time interactive message sending

R Remote host system status and user name-server facilities

A Remote login with virtual terminal support

75

e
s

G

sﬁﬁazg e

o

Symbolics 3600 Technical Summary Hardware: A New Lisp Machine

3600 Hardware: A New Lisp
Machine

The 3600 is built to execute large programs which need
high-speed symbolic and numeric computation. Because the 3600
hardware and software were designed in parallel, the instruction
set of the machine is designed for efficient execution of Lisp.
Many Lisp instructions execute in one or two microcycles.

The 3600 is not simply a faster version of the older Lisp
Machines. The 3600 features an entirely new hardware design
which takes advantage of many technological advances of recent
years. For example, the 3600 is the first computer to provide
hardware-assisted garbage collection.

High-speed computations in the 3600 are aided by the use of a
number of caches designed to increase Lisp performance,
including the following:
A Instruction cache

Used for prefetch of instructions
A Stack buffers

Used for Stack manipulations
A Map cache

Used for virtual memory operation
A Garbage collection tables

Used for recovery of memory space
The result of this new design is a processor that is especially fast
for Lisp but is also reliable. Reliability is accomplished through
a myriad of automatic: checks which do not slow down the
execution speed of user programs.

77

| A Nemory

aKkx@Bep g

‘F——RDDR CALC

— AMEM WA

8 Hemory

Immediate —1

: ‘ESégaef»p/jb BHEN

Symbolics 3600 Technical Summary Hardware: Processor Architecture

3600 Hardware: Processor
Architecture

Although the 3600 is a single-user machine, its processor is not in
the microcomputer class of, for example, the MC68000. Rather,
it is more of a "supermini" computer, with a raw computational
power of over one million 32/36-bit operations per second in
parallel with console display and FEP operations.

The 3600’ processor architecture is significantly different from

that of conventional systems. The features of the 3600 processor

architecture include the following:

A Microprogrammed 32/36-bit processor designed for Lisp
(180- to 250-nanosecond cycle time, variable)

A Run-time data-type checking in hardware

A Stack-oriented architecture

A Large, high-speed stack buffer with hardware stack pointers

A Fast (5 MIPS) instruction fetch unit with large instruction
cache

A Efficient hardware-assisted garbage collection

A Microtasking

A 5-Mwords/sec peak data transfer rate (20-Mbytes/sec)

R 256-Mword (1-Gbyte) virtual memory

Parallelism is exploited in the 3600 processor by executing these
operations concurrently:

A Run-time data-type checking

A Garbage-collection support

A Result tagging

A Instruction fetch

A Instruction decode

A Instruction execution

Tagged Architecture
The 3600 processor exemplifies a tagged architecture computer.
In recent years, it has become recognized that some form of
data-type checking is important to catch invalid operations before
they occur. This ensures program reliability and data integrity.

Run-time Data-Type Checking

The special hardware allows data-type checks to be carried out at
run-time and not just at compile-time. Data-type checking was
performed in microcode in previous Lisp Machines. Hardware
implementation of this operation on the 3600 speeds it up

79

Symbolics 3600 Technical Summary Hardware: Processor Architecture

considerably. This increase in speed is accomplished by
performing the data-type checking in parallel with instruction
execution, rather than requiring execution of extra
microinstructions.

Run-time data-type checking is important in a dynamic Lisp
environment, since compile-time data-type checking is not
compatible with the flexibility of the Lisp language and the
generic nature of most functions which allows them to operate
on many different data-types. Garbage-collection algorithms (see
page 98) are also aided by fast data-type checking.

Run-time data-type checking is supported by appending a tag
field to every word processed by the processor. The tag field
indicates the type of the object being processed. For example, by
examining the tag field, the processor can determine whether a
word is an integer or a floating-point number.

With the tagged architecture of the 3600, all macroinstructions
are generic. That is, they work on all data types appropriate to
them. For example, one add operation, is good for fixed- and
floating-point numbers, double-precision numbers, and so on.

The behavior of a specific ADD instruction is determined by the
types of the operands, which the hardware reads in the operands’
tag fields. No performance penalty is associated with the
data-type checking, since it is performed in parallel with the
instruction. By using generic instructions and tag fields, one
3600 macroinstruction can do the work of several instructions on
more conventional machines. This permits very compact storage
of compiled programs and fast execution.

Word Formats and the Cdr-coding Feature
On the 3600, a word contains one of many different types of
objects. Two basic formats of 36-bit words are provided, as
shown in figure 20.

One format, called the tagged pointer format, consists of a 6-bit
tag, 2-bit cdr-code, and 28 bits of address. The other format,
called the immediate number format, consists of a 2-bit tag, a

80

Symbolics 3600 Technical Symmary Hardware: Processor Architecture

Figure 20. 3600 word 22)
formats. ITl + l :;]
data type immediate number
CDR code
2] 6] 28 |
T } L)
data type pointer
CDR code

2-bit cdr-code, and 32 bits of immediate numerical data.’

Cdr-coding for List Compaction

An important feature of the 3600 is the use of list compaction or
cdr-coding. Understanding of this feature requires knowledge of
the special Lisp terms for parts of list structure. The first
element of a list is called the car; the rest of the list is called the
cdr. The way lists are represented in traditional Lisp
implementations is shown in figure 21.

On the 3600, the amount of storage needed to hold such a list
can be reduced using a cdr-coded representation. Two bits of
every 3600 word are reserved for cdr-coding.

The possible values of the cdr-code are normal, next, and nil.
Normal indicates a standard car-cdr list element pair. Next and
nil represent the list as a vector in memory. This takes up only
half as much storage as the normal case, since only the cars are
stored. Zetalisp primitives that create lists make these
compressed cdr-coded lists. Figure 22 presents an example of the
same list shown in figure 21, but with a cdr-coded representation.
Notice that the number of memory cells needed to store the list
is reduced from six words to three.

5In main memory, each word is supplemented with eight more bits, including
seven bits for ECC (error correction code) and one spare bit, to make a
44-bit word.

81

Symbolics 3600 Technical Summary Hardware: Processor Architecture

Figure 21. Representation of
the list (A B C) in normal form
uses six words. (Note that the
type field is not shown in this
diagram.)

CDR-code Data
CDR-normal A
CDR pointer

C* CDR-normal B

CDR pointer ——j
L—' CDR-normal C

nil

Hardware-supported Data Types

Thirty-four data types are directly supported in hardware by the
3600 processor. The type-encoding scheme is shown in figure 20.
A Lisp pointer is represented in 34 bits of the 36-bit word. The
other two bits of the word are reserved for cdr-coding. The first
two bits of the 34-bit tagged pointer are the primary data-typing
field. The value of this field indicates whether the other 32 bits
hold an immediate fixed-point or floating-point number. (The
floating-point representation is compatible with the IEEE
standard.) The other two values of the 2-bit field indicate that
the next four bits are further data-type bits. The remaining 28
bits are used as an address to that object.

82

Symbolics 3600 Technical Summary Hardware: Processor Architecture

Figure 22. Representation of
the list (A B C) in compacted CDR-next A
(cdr-coded) form uses three
words. (Note that the type
field is not shown in CDR-next B
this diagram.)

CDR-nil C

The object types include:

A Symbols

A Lists ("cons cells")

A Strings

A Arrays

A Flavor instances

A Bignums (infinite-precision integers)
2 Extended floating-point numbers

A Complex numbers

X Rational numbers

A Coroutines

A Compiled code

A Closures

A Lexical closures

A Nil

A Internal codes not seen by the user

Stack Mechanisms
The 3600 is not a pure stack machine, but it is a stack-oriented
machine. This means that most, but not all, of the 3600
instructions use the stack in getting operands and storing the
results. Multiple stacks and multiple stack buffers in hardware

83

Symbolics 3600 Technical Summary Hardware: Processor Architecture

are a part of the design of the 3600 processor. Active stacks are
always kept in a stack buffer. The stack buffers in the processor
provide fast temporary storage for data references associated with
programs, such as values being computed, arguments, local
variables, and control-flow information. A main use of a stack is
to pass arguments to functions and flavor methods. Fast
function calling is critical to the performance of processor-bound
programs.

The 3600 features a new stack layout, designed to make function
calls and returns as fast as possible. Maximum performance is
achieved in the simple case of a function call with zero to four
required or optional arguments.

A stack on the 3600 is managed by the processor hardware,
which maintains various pointers to the stack. Stack-buffer
manipulations such as push and pop are carried out by the
processor and occur in one machine cycle.

Hardware Support for Stack Groups
On the 3600, a given computation is always associated with a
particular stack grc)up.6 Hence, the stacks are organized into
stack groups. A stack group has three components:
A Control stack
Contains the control environment, local environment, and caller
list
A Binding stack
Contains special variables and lambda bindings
A Data stack
Contains Lisp objects of dynamic extent, such as temporary
arrays and lists
The control stack is formatted into frames. The frames
correspond to function calls. A frame consists of a fixed header,
followed by a number of argument and local variable slots,
followed by a temporary stack area. The data stack is provided
to reduce garbage-collection overhead.

6See David Moon and Daniel Weinreb, Lisp Machine Manual (Symbolics, Inc.,
1981) for more details on stack groups.

84

Symbolics 3600 Technical Summary Hardware: Processor Architecture

3600 Instruction Set
The 3600 machine instruction set corresponds very closely to
Zetalisp. Although programmers never program directly in the
instruction set (no assembler is supplied with the 3600), they
encounter the instruction set when using the Inspector or the
disassembler.

Many 3600 instructions address a source of data on which they
operate. If they need more than one argument, the other
arguments come from the stack. Examples include PUSH (push
source onto the stack), ADD (add source and the top of stack),
and CAR (take the car of the source and push it onto the
stack). These instructions exist in several formats.

Unlike LM-2 instructions, 3600 instructions do not have a
separate destination field. All instructions have a version which
pushes onto the stack. Additional opcodes are used to specify
other destinations.

Instruction Formats
The instructions are 17 bits long, with nine bits for the opcode
and eight for operand/address. They are packed two per word
in memory. Seven instruction formats are used:
A Unsigned-immediate operand
Used in immediate: fixnum arithmetic and specialized
instructions, such as adjusting the height of the stack.
Operand is an 8-bit positive integer.
A Signed-immediate operand
Operands in a similar manner as unsigned-immediate operand.
Operand is an 8-bit two’s complement integer.
R PC-relative operand
Is similar to signed-immediate in branching and format.
Operand is offset relative to the program counter.
A No operand
Used by many basic Lisp instructions. Any operands not
specified explicitly by the instruction are popped off the stack.
A Link operand
Used for constants. Operand specifies a reference to a linkage
area in the compiled-code object.

85

Symbolics 3600 Technical Summary Hardware: Processor Architecture

Table 1. Instruction
Categories. (Note:
The instructions listed
here do not constitute
the entire instruction

set.)
Category Explanation Examples
Data movement instructions Move data without push-immed
changing them pop-n-save

movem-local

Instance variable instructions

Used in manipulating
instance variables of flavors

push-instance-variable
movem-instance-variable
instance-ref

Function calling instructions

Call function; the arguments
are already on the stack

call-0-stack
call-n-return
funcall-1-stack

Binding and function
entry instructions

Used within functions

that take more than

four arguments or have a
rest argument, and hence
do not have their arguments
set up by microcode

take-n-args
take-n-optional-args-rest

Function return instructions

Return values

return-stack

of program control

from a function return-multiple
Quick function call Call function popj
and return instructions quickly
Branch instructions Change the flow branch

branch-true-else-pop

Catch instructions

Change the flow of program
control with a nonlocal exit

catch-open-stack
unwind-protect-open

86

Symbolics 3600 Technical Summary Hardware: Processor Architecture

Category Explanation Examples

Predicates Standard tests eq
not
fixp
loatp
symbolp
arrayp

Arithmetic instructions Standard arithmetic, add-stack
logical, and multiply-stack
bit-manipulation operations multiply-stack

' quotient-stack
remainder-stack
rot-stack

List and symbol instructions Used for manipulation of lists car
and symbols cdr
rplaca
set
symeval
property-cell-location
package-cell-location

Array instructions Define and manipulate array-leader
arrays or access store-array-leader
structure fields

Subprimitive instructions Provide access to memory, halt

function calling, and various %multiply-double

hardware operations at a level %data-type

below the normal %pointer

Lisp languages %stack-group-switch
%gc-tag-read

87

Symbolics 3600 Technical Summary Hardware: Processor Architecture

A Indirect link operand
Used for function and special variable references. Operand
specifies an indirect reference to the linkage area in the
compiled-code object.

A Local operand
Used for many basic Lisp instructions. Instruction addresses
an argument in the local stack frame. Operands after the first
are popped off the stack.

3600 instructions can be grouped into a number of categories as

shown in table 1.

The Instruction-Execution Engine
The 3600 instruction-execution engine works as a combination of
hardware and microcode. The engine includes hardware for the
following functions:
A Address computation
A Data-type checking
A Rotation, masking, and merging of bit fields
A Arithmetic and logical functions
A Multiplication
A Stack-buffer manipulation
A Result-type insertion

Example of Instruction Execution: ADD

An ADD instruction causes the hardware to perform the

following operations in one microcycle:

A Fetch the operands from the stack.

A Check the data-type fields.

A Assume the operands are integers and perform the 32-bit
add; if the operands are not fixnums, trap to microcode to
perform a different type of add.

A Check for overflow upon which trap to microcode to return
a bignum result.

A Tag the result with the proper data type.

A Push the result onto the stack.

 Dispatch to the microcode for the next instruction.

Data-type checking incurs no overhead because it happens in
parallel with the addition, within the same microcycle.

88

Symbolics 3600 Technical Summary Hardware: Processor Architecture

The Instruction Fetch Unit
A main goal of the 3600 architecture is to execute one simple
macroinstruction per clock cycle. The instruction fetch unit
(IFU) supports this goal by attempting to prefetch instructions
and perform microinstruction dispatching in parallel with the
execution of previous instructions.

The prefetch (PF) part of the IFU fills from memory a 1-Kword
instruction cache. The instruction cache holds the 36-bit
instruction words. 2K instructions (17 bits each) can be held in
the instruction cache. The IFU takes the instructions, decodes
them, and produces a microcode address. It also predicts
branches and presents the instruction at the target of the branch,
if it is in the cache, as the next instruction. Figure 23 presents a
diagram of this process.

Microcode and Microtasks
The microcode for the 3600 is contained in an 8-Kword
microcode memory. Each 112-bit microcode instruction specifies
two 32-bit data sources from a variety of internal scratchpad
registers. Users would normally not write microprograms, since
many Zetalisp instructions are executed in one microcycle. Thus,
compiled Zetalisp code often runs almost as fast as customized
microcode would. However, support for user microcoding is
provided.

Microtasking

The 3600 micromachine is time-division multiplexed to support
microtasking. This means that the processor performs
input/output operations, such as driving the disk, in addition to
executing macroinstructions. This has the advantage of providing
the disk controller and other microtasks with the full processing
capability and temporary storage of the 3600 micromachine.

Up to 16 different hardware tasks can be activated: eight for
direct memory access (DMA) devices, two for other hardware,
five for software, and one unused. Control of the micromachine
typically switches from one task to another every few
microseconds. The following microtasks run in the 3600

A Zetalisp emulator

89

Symbolics 3600 Technical Summary Hardware: Processor Architecture

Figure 23. Instruction
pipeline path, showing the
relation between the IFU and
the rest of the processor.

L bus Instruction Fetch Unit

ECC| ¢-1,| | PF S| 1 | —&xl| C Yy .|| E

Y

word| decoded dispatch 112-bit
| word address microcode
plus word
| argument
' |
' |
e e |
Virtual
datapath output
- Memory -
Map

ECC Error correction code logic
» Memory PF Prefetch instructions

| Instruction decoding, instruction cache,
and next instruction

Control memory and sequencing
Instruction execution engine

mo

Copyright © 1983 Symbolics, Inc.

90

Symbolics 3600 Technical Summary Hardware: Processor Architecture

Executes instructions
A Disk transfer

Manages disk operations
X Ethernet

Performs network operations
A Audio output

Maintains audio buffers and generate sound samples
A FEP

Communicates with the FEP and generates interrupts at

regular intervals
A Device service

Controls DMA tasks
Microdevices are those devices serviced by microcode, such as the
disk controller and the Ethernet controller. The FEP and the
microdevices can initiate task switches on their own behalf,
without incurring overhead. Logic on the sequencer board
determines the priority of the microtasks. Multiple microcontexts
are supported in hardware, eliminating the need for software to
save the context of one microtask before switching to another.

91

(256K)

170@02 (H512K)1 OR 1708083

PCBA

~
,

CS ne.

li

‘symbo

18

68|
: - g
AMD 2963 Fﬂ:

rETTTYTyY

AMD25%

AWM D 2966

Willzmww,ﬁw, mmm

LT

| gpeesseq

sssness

gESessre csoseg M

gasseeey

<+

.0
- @M ;
ammu e

oz

: k?ink
.

35117 TO B4 LIS, AT 15R45

T

T

hhbbdbbddbabbidabdd

D

St eee

L2111

0
1

‘ szn’:!r&!ﬁ:‘-

R2To 2ig6

W

@
?

929

4

.
b

NS ON COMPOKNENT

COMMP

20P8

2R TO 2 (A SuoWN) |

Vo R15 70 16 R 12,36 LITTO %Ltk KeRI TO 147

195 TOQ"ZOEB} ISEG WO 20EG64
?

ONEWRT P 2078 TO 20P1O

3 = .
RI3TO H4R Y

ENT PN 929 TO AAZ

N9ET TO 20ET

- COMPOK

4RIITO 16R3,16

| T+ 128045 ‘
DES IGNATIONS C2 THRD Cle5 OMITT

ED FAR CLARYTY.

¥

.(oEE LOCATION BLOCK 1K P/L)y

PART NO. NOT SHOWN QW FACE OF DWG

.
3

Symbolics 3600 Technical Summary Hardware: Organization of Memory

3600 Hardware: Organization
of Memory

The 3600 processor has a collection of interacting internal
storage features for increasing computational throughput. These
include the following:

A Scratchpad memory

A High-speed instruction cache

A Two large stack buffers

A Virtual memory addressing

This chapter describes these memory systems and the operation
of the 3600’s L bus.

Instruction Cache
The 3600 has a 1-Kword instruction cache which stores 2K
instructions. The instruction cache is fed by the IFU (see page
89). It is cycled at the machine clock rate.

Stack Buffers
Because it is a stack-oriented machine, the 3600 has no
general-purpose registers in the conventional sense at the
macroinstruction level. This means that many instructions fetch
their operands directly from the stack.

The two 1-Kword stack buffers are a special 3600 hardware
feature which speed instruction execution. The stack buffers
function as special high-speed caches used to contain the top
portion of the Lisp control stack. Since most memory references
in Lisp programs go to the stack, the stack buffers provide very
fast access to the referenced objects. The virtual memory system
will automatically map active processes into the stack buffers.

The stack buffers store several pages surrounding the current
stack pointer, since they most likely contain the next-referenced
data objects. When a stack overflows or underflows the stack
buffer, a fresh page of the stack buffer is automatically allocated,
possibly sending another page out to main memory.

Hardware Pointers

Another feature of the stack buffers, hardware-controlled
pushdown-pointers, supports high-speed access to the stack.
These pointers eliminate the need to execute microcode
instructions to manipulate the stack. All stack manipulations

93

Symbolics 3600 Technical Summary Hardware: Organization of Memory

work in one cycle. A hardware top-of-stack register facilitates
quick access to that location at all times. (See page 83.)

Physical Memory
Physical memory on the 3600 is addressed in 44-bit word units.
This includes 36 bits for data, seven bits for error correction
code (ECC) plus one bit spare. Double-bit errors are detected,
while single-bit errors are both detected and corrected
automatically. 3600 memory is implemented using 200-ns
64-Kbit dynamic RAM (random access memory) chips. The
minimum memory configuration is 256 Kwords (1 Mbyte). The
maximum physical memory configuration is 7.5 Mwords (30
Mbytes).

For random access to virtual addresses, the 3600 can read or
write a word every three cycles (600 ns). Sequential addresses
can be read or written every cycle (one word per 200 ns).

Virtual Memory
From the programmer’s viewpoint, virtual memory is the space in
which programs and data are contained (see page 65). From the
system’s viewpoint, the virtual memory space is a collection of
pages of information, some of which reside in physical memory
and some of which reside on disk. Since programs can be run
only when they are resident in physical memory, the 3600
hardware automatically swaps between physical memory and the
pages on the paging disk.

The 3600’ 28-bit virtual address space consists of 256 million
36-bit words. The virtual address space is divided into pages,
each containing 256 words. The upper 20 bits of a virtual
address are called the virtual page number (VPN), and the
remaining eight bits are the word offset within the page. (See
figure 24.) Transfers between main and secondary memory are
always done in pages.

Virtual Memory Operation

The 3600 virtual memory scheme is implemented via a
combination of Lisp code, microcode, and hardware. The
memory-management task is divided into policies and mechanisms.

94

Figure 24. 3600 virtual
memory mechanisms.

Symbolics 3600 Technical Summary Hardware: Organization of Memory

27 87 0
Virtual word
Memory page offset
Address

o) Hardware

© memor

% »| Map Cache Y

©

~
Map Cache Physical
miss Memory

] Address ,

g P Hash ‘ 'd

o o age has o wor

S " | Table Cache > page offset
Page Hash £ Main 23 1 79
Table Cache memory
miss

& . Page Hash

memory
Page Hash Table
miss
- Mlzaﬂriigry , Virtual Page
Page Table | Main Number
memory
Hard fault
(not in main
memory) ’ R Secondary . Disk Page
™| Memory Number
Page Table
Copyright ® 1983 Symbuolics, inc.

95

Symbolics 3600 Technical Summary Hardware: Organization of Memory

Policies are realized in Lisp; these are decisions as to what to
page, when to page it, and where to page it to. Mechanisms are
realized primarily in microcode and hardware; they implement
the policies.

Translating a Virtual Address into a Physical Address

A Lisp pointer contains a virtual address. Before the hardware
can reference a Lisp object, the virtual address must be
translated into a physical address. A physical address says where
in main memory the object is currently residing. If it is not
already in main memory, it must either be created or else copied
into main memory from secondary memory (disk). Main
memory acts as a large cache — the disk is referenced only if
the object is not already in main memory. The system attempts
to keep the object resident for as long (and only as long) as it is
used.

In order to translate quickly and efficiently a virtual address into
a 24-bit physical address, the 3600 uses a hierarchy of translation
tables. This hierarchy of mapping tables consumes less than 2%
of main memory. The levels used are:
X Map Cache
In the processor, referenced by the hardware. It is a
high-speed RAM that can accommodate 8K entries.
A Page Hash Table Cache (PHTC)
In wired main memory, referenced by the microcode with
hardware assist. The size of the PHTC is proportional to the
number of main memory pages, and can vary from 4 to 64
Kwords, requiring one word per page frame.
A Page Hash Table (PHT)
and Main Memory Page Table (MMPT)
In main memory, referenced by Lisp. The size of both of
these tables is proportional to the number of main memory
pages, with the PHT being 75% dense and the MMPT 100%
dense. Both tables require one word per entry. The PHT and
MMPT completely describe all pages in main memory.
A Secondary Memory Page Table (SMPT)
In main memory. It describes all pages of disk swapping space
and dynamically grows as more swapping space is used. It is
organized as a B*-tree.

96

Symbolics 3600 Technical Summary Hardware: Organization of Memory

The hardware translates a virtual address into a physical address
by checking the map cache for the virtual page number (VPN).
If found, the cache yields the physical page number the hardware
needs. If the VPN is not in the map cache, the hardware hashes
the VPN into a PHTC index, and reads the selected

PHTC entry. If it matches the VPN, the map cache is refilled
and execution proceeds. Otherwise a page fault to Lisp code is
generated.7

Page faults can occur for two reasons. The first is a cache miss
in the map cache and PHTC, in which case the fault handler
looks up the page in the PHTC and MMPT, loads the map cache
and the PHTC, and returns. The second reason is a requested
fault, because of conditions like "I/O in progress,” or "The page
is not in memory", in which case the handler takes whatever
action is required to'make the page accessible. If the page is not
in main memory, the handler must copy the page from disk into
a main memory page. When a page fault gets to this point, it is
called a hard fault. A hard fault must do the following:

A Find the virtual page on the disk by looking up the VPN in
the SMPT.

A Find an available page frame in main memory. An
approximate FIFQ (first-in, first-out) pool of available pages
is always maintained. When the pool reaches some
minimum size, a background process fills it by making the
least recently used main memory pages available for reuse.

If the page selected for reuse was modified (that is, its
contents in main memory were changed so the copy on disk
is out-of-date), it must be first copied back to disk prior to
its being available for reuse. The background process
minimizes this occurrence at fault time by copying modified
pages back to disk periodically, especially those eligible for
reuse.

A Copy the disk page into the main memory page frame.

A If the area of the virtual page has a "swap-in quantum”
specified, the next specified number of pages is copied into
available main memory page frames as well. If these

7Except for special cases, which are handled in microcode.

97

Symbolics 3600 Technical Summary Hardware: Organization of Memory

prefetched pages are not referenced within some interval and
some page frames are needed for reuse, their frames are
reused. This minimizes the impact of prefetching
unnecessary pages.

A Update the PHT, MMPT, PHTC, and map cache to contain
the page just made resident, and forget the previous page
that occupied the frame.

A Return from the fault and resume program execution.

Garbage-Collection Mechanisms
In a Lisp environment, storage for Lisp objects is allocated out of
an area in virtual memory. Storage must be deallocated and
returned automatically when objects are no longer referenced.
Garbage-collection routines manage this dynamic storage
allocation and deallocation. Garbage collection is the process of
finding inaccessible objects and reclaiming their space. This
space is then free to be reallocated.

The goal of a garbage-collection algorithm is to reclaim storage
quickly and with a minimum of overhead. Conventional
garbage-collection schemes are computationally costly and
time-consuming, since they involve reading through the entire
address space — a major task when a large address space is used.
This is done in order to prove that nowhere in the address space
do references to the storage being considered for reclamation
exist.

Hardware-assisted Garbage Collection
Garbage collection on the 3600 is incremental, being run when
necessary in the background. The design of the 3600 includes
unique features for hardware assistance to the garbage-collection
algorithms, which greatly simplify and speed up the process.
These hardware features are used to mark parts of memory to be
included in the garbage-collection process, leaving the rest of
memory untouched. The hardware features include:
A Type fields
Distinguishes memory words containing pointers from those
containing numbers
A Page Tags
Indicates pages containing pointers to temporary space

98

Symbolics 3600 Technical Summary Hardware: Organization of Memory

A Multiword read instructions

Speeds up the memory scanning
The 2-bit type field inserted into all data words by the hardware
simplifies garbage collection. This field indicates whether or not
the word contains a pointer — that is, a reference to a word in
virtual memory.

Each physical page of memory has a page-tag bit. This is set by
the 3600 hardware when a pointer to a temporary space is
written into any location in that page. When the
garbage-collector algorithm wants to reclaim some temporary
space, it scans the page-tag bits in all the pages. Since the
page-tag memory is small relative to the size of virtual memory,
it can be scanned rapidly (about two ms per Mword of main
memory that it describes). For all pages with the page-tag bit
set, the garbage collector scans all words in that page, looking for
pointers to "condemned" temporary space. For each such pointer
it copies out the object pointed to and adjusts the pointer so that
it points at the copy. The garbage collector also scans the stacks.

Multiword read operations speed up the garbage collection by
fetching several words at a time to the processor. This makes
the page-scanning faster.

The virtual memory software assists garbage collection with
another mechanism. When a page with its page-tag bit set is
written to disk, the 3600 paging software scans through the
contents of the page to see what it is pointing at. The software
maintains a table recording the swapped-out pages which contain
pointers to temporary spaces. Since the garbage collector checks
this table, it can tell which pages contain such pointers. This
knowledge is used to improve the efficiency of the
garbage-collection process. Only pages that actually contain
pointers to the condemned space need to be read in from the
disk before the space can be reclaimed. In this way, inefficient
interaction between the garbage collector and the virtual memory
is avoided. The garbage collector does not greatly increase the
page-swapping activity of a user’s program.

99

Symbolics 3600 Technical Summary Hardware: Organization of Memory

The L Bus
The L bus backplane connects the processor to memory and to
high-speed peripherals (see Figure 25). Peripherals on the L bus
include the disk, network, and TV controllers, as well as the
front-end processor (FEP). The address paths of the L bus are
24 bits wide, and the data paths are 44 bits wide, including 36
bits for data, seven bits for error correction, and one bit spare.
The L bus is capable of transferring one word per cycle at peak
performance (approximately 20 Mbyte/sec).

Figure 25. View of the L bus
backplane.

A central memory control unit manages the state of the L bus
and arbitrates requests from the 3600 processor, the IFU, the
FEP, or other DMA devices. It also performs error detection
and correction.

100

Symbolics 3600 Technical Summary Hardware: Organization of Memory

As an example of L bus operation, a normal memory read cycle

includes three phases.

A Request
The processor or the FEP selects the memory card from which
to read (address request).

A Active
The memory cardiaccesses the data; the data are strobed to an
output latch at the end of the cycle.

A Data
The memory card:drives the data onto the bus; a new request
cycle can be started.

A normal write operation includes two phases.

A Request
The processor or the FEP selects the memory card to which to
write.

A Active
The processor or the FEP drives the data onto the bus.

Block-Mode Operation

The L bus logic facilitates block-mode memory operations. In
block-mode operations, successive memory locations are accessed
on each cycle. This is especially useful in copying or searching
procedures. On the 3600, block-mode operations apply only to
sequential addresses, since the memory boards are internally
interleaved.

Parallel pipelining techniques are used in the L bus logic to
overlap several bus requests. For example, on block-mode
memory writes, an address may be requested while a separate
data transfer takes place. On block-mode memory reads, a new
request is initiated every L bus cycle.

Direct Memory Access (DMA) Operation

A modified L bus memory cycle is used for DMA operations by
devices on the bus. In a DMA output operation (from memory
to a device), as in all memory read operations, the data from
memory are routed to the ECC logic. Then the data are shipped
to the appropriate DMA device, for example, FEP, disk
controller, network controller.

101

Symbolics 3600 Technical Summary Hardware: Organization of Memory

Figure 26. L bus timing. First half clock k_\ '
|
Clock !
Memory '
I
read Request 14 :
cycle Write {
|
Address !
A :
Data N
raw error-
data corrected
data
Write N
Memory Data N
write
cycle ECC bits N
Time _ data are written to
o RAMs

Both microcode-mediated DMA and device-controlled DMA are
possible. In microcode-mediated DMA, a microcode task supplies
the address, while the DMA device supplies or receives the data.
The design of the microtasking hardware ensures that using
microcode-mediated DMA for the disk imposes a peak load of
only 12% of the processor.

In device-controlled DMA, the device supplies the address;
processor microcode is not involved. Device-controlled DMA is
used by the FEP and by other devices that need fast
nonsequential access to memory on the L bus.

102

Symbolics 3600 Technical Summary Hardware: Organization of Memory

The L Bus Clock
Main memory and 3600 processor operations are synchronous
with the L bus clock, as are all L bus operations. The clock rate
is roughly 5 MHz, but the exact cycle can be tuned by the
microcode. A field in the microcode allows different speed
instructions for different purposes. For example, fast instructions
need not wait the long clock cycle needed by slower instructions.
When the processor takes a trap, the clock cycle is stretched so
that a trap-handler microinstruction can be fetched.

103

i R 8

L

Symbolics 3600 Technical Summary Hardware: 1/O Systems

3600 Hardware: |/0O Systems

This chapter discusses the major input/output systems associated
with the 3600, including the front-end processor (FEP), serial
lines, the Spy bus, the console, and the digital audio output
system.

The FEP and MULTIBUS
The 3600 includes an. MC68000-based FEP which serves several
functions. During normal operation, the FEP controls the
low- and medium-speed input/output (I1/0) devices, logs errors,
and initiates recovery procedures if necessary. The use of the
FEP drastically reduces the real-time response requirements
imposed directly on the 3600 processor. Devices such as the
mouse, keyboard, serial lines, parallel port, and cartridge tape are
connected to the 3600 via the FEP.

The FEP is supplied with 128 Kbytes of RAM (random access
memory) and 64 Kbytes of EPROM (electrically programmable
read only memory). An optional IEEE-796 (MULTIBUS) card
cage can be used to attach commercially available

MULTIBUS peripherals to the 3600 via the FEP. The FEP
contains the MULTIBUS memory map within its address space.

Four programmable serial lines (including the AM1200 modem)
as well as MULTIBUS DMA data are routed through the FEP.
MULTIBUS devices can perform DMA operations directly to the
3600’s L bus. DMA operations from the FEP to 3600 memory
can be carried out at a rate of more than 1 Mbyte per second.

Serlal Lines

Four serial lines are connected to the FEP. Two are high-speed
and two are low-speed. Each one can be used either
synchronously or asynchronously. One high-speed line is always
dedicated to the 3600iconsole. One low-speed line must be
dedicated to an AM1200 modem, if it is present. The
transmission rate of the low-speed lines is programmable, up to
19.2K bps. The available high-speed line is capable of speeds up
to IM bps. The nonconsole lines are terminated using standard
25-pin D connectors (EIA RS-232 compatible).

105

Symbolics 3600 Technical Summary Hardware: 1/0 Systems

MULTIBUS Interrupts

The FEP processes real-time interrupts from the MULTIBUS.
After receiving an interrupt, the FEP traps to the appropriate
interrupt handler. Users can write additional handlers in LIL,
the programming language for the FEP (see page 50.) The
handler might process the interrupt on its own or relay a message
to the 3600 processor or to some other device.

The LIL interrupt handler can intercommunicate freely with Lisp
code running in the 3600 processor, using shared memory and
real-time process wakeups.

Bootstrap Loading the 3600

The FEP performs the following operations in bootstrap

loading the 3600:

A Runs diagnostic checks on the 3600 processor, display screen,
and disk

A Loads bootstrap program into the FEP memory

A Gets the microcode from the FEP file system and puts it in
the 3600

A Reads virtual memory code into 3600 memory

A Sets up machine-configuration table

A Starts the 3600 processor

If the 3600 fails any of the diagnostic tests, the FEP notifies the
user via the console terminal or the 12-character display on the
front panel of the processor, depending upon the nature of the
failure.

Hardware Error Handling

The FEP reports hardware error signals from the 3600 processor.
If the errors come from hardware failures detected by
consistency checks (for example, parity errors in the internal
memories), the 3600 processor stops. At this point the FEP
directly tests the hardware and either continues the processor or
notifies the user. If the error signals are generated by microcode
or Lisp interacting with the hardware, the FEP records the error.
These are typically disk or memory errors, not pure software
errors like an unbound variable.

Periodically, the 3600 requests information from the FEP and

106

Symbolics 3600 Technical Summary Hardware: 1I/O Systems

records it on the disk, to be used by the maintenance personnel.
Since the FEP always has the most recent error information, it is
possible to retrieve it when the rest of the machine crashes. This
is especially useful when a recent hardware malfunction causes a
crash. Since the error information is preserved, it can be
recovered when the 3600 processor is revived.

Running Diagnostics from the FEP

When the 3600 is not running, the FEP provides diagnostic and
microcode debugging tools. Simple diagnostics are stored in an
EPROM within the FEP, along with code to run the network
and the disk. More complex diagnostics are stored on disk or
can be loaded from the network. The FEP uses the Spy bus to
test the internals of the 3600 processor.

For debugging hardware problems, it is possible to connect to the
FEP from another console on the Ethernet or by dialing in from
a remote console. Should more sophisticated diagnostics be
needed, these can be loaded from the disk or over the network
connection.

The Spy bus

The diagnostic interface to the 3600 includes the Spy bus. This
is an 8-bit wide bus which can be used to read from and write to
various portions of the 3600 processor. The readable locations in
the processor allow the FEP to spy on the operation of the 3600
processor, hence the name Spy bus. For example, using the Spy
bus, the FEP can force the 3600 processor to execute
microinstructions for diagnostic purposes. The FEP can examine
data paths and registers to pinpoint the source of a hardware
failure.

When diagnostics are not running, the FEP uses the Spy bus as a
special channel to certain DMA devices. Normally, the FEP uses
the Spy bus to receive a copy of all incoming Ethernet packets.
It can also set up transfers to the Ethernet and read from the
disk via the Spy bus.

107

Symbolics 3600 Technical Summary Hardware: 1/0 Systems

The FEP File System

The FEP file system resides on the main disk. It contains all the
files required to boot and diagnose the 3600 processor. It also
acts as the first level of disk organization, since it contains files
which are not part of the local file system, such as the paging
area, microcode files, and the local file system itself. Every page
on the disk is contained in the FEP file system.

Both the FEP file system and the local file system have their
place. While the local file system is designed for speed and
flexibility, the FEP file system is designed primarily for simplicity
and survivability.

The FEP file system is integrated into the normal pathname host
system. To the 3600 software, it looks very similar to the local
and remote file systems. For example, the normal file-copying
operations can be used to copy FEP file-system files from
machine to machine.

The NanoFEP
The NanoFEP is the front-end to the front-end processor. This
tiny microcomputer is charged with some small but important
tasks. Specifically, the NanoFEP performs the following
operations:
A Boots the FEP
A Manages the front-panel lights on the processor cabinet
A Monitors the temperature inside the processor cabinet
A Sets the time-of-day clock

Based upon an Intel 8749 microcomputer chip, the NanoFEP has
a total of 50 bytes of battery-backed RAM.

The 3600 Console
The standard 3600 console includes a high-resolution (1150 x 900
pixel) black-and-white monitor, an MC68000 microprocessor
subsystem,8 an 88-key alphanumeric keyboard, a mouse, and a
headphone jack.

8This is a second MC68000, in addition to the MC68000 in the FEP.

108

Symbolics 3600 Technical Summary Hardware: 1/0 Systems

Within the console are interfaces for the following devices:
A Alphanumeric keyboard

A Mouse

A Digital audio output system

The aspect ratio of the console display is 1.27 horizontal to
vertical. For viewing; visibility, you can tilt or turn the console.
The screen is refreshed at 60 Hz (noninterlaced) on a P104
phosphor. The bit map is a bit-per-pixel video generator,
consisting of a raster memory, a rasterizer, and a sync generator.
The bit map appears as memory on the L bus.

Communication from the console to the 3600 is processed
through the FEP. Communication between the FEP and the
console processor is based on a 600K bps bidirectional link over a
serial line.

In the standard console configuration, the digital audio and the
video on the monitor are driven directly by the 3600 processor,
not by the MC68000 in the console. Via its interface, the
MC68000 in the console handles all other communications, such
as keyboard and mouse.

Digital Audio Output System
A digital audio output system (see figure 27) will be standard on
the 3600 console. The console presently offers only monaural
conversion. However,:the 3600 processor is capable of providing
two 16-bit audio channels.

Audio output is a function of a microtask, driven by a microtask
wakeup signal sent from the input/output board (IOB). Stereo
audio samples are 32 bits in length. The most significant 16 bits
are the left channel, while the least significant 16 bits are the
right channel. With 16-bit stereo samples, approximately 2% of
the processor’s time is used in outputting precomputed audio
samples, at a 50 KHz sample rate.

The digital audio output from the processor is double-buffered on
the IOB. Since the audio shift register takes 20 microseconds to
shift out a full stereo sample to the Manchester-encoding logic,
the processor has this much time to forward the next sample to
the buffer register.

109

Symbolics 3600 Technical Summary Hardware: 1/O Systems

The serial audio data from the shift register includes 40 bits
which facilitate decoding at the console end. The bit stream
format is as follows:

1 start bit
16 bits of sample
1 channel bit (L)
2 stop bits

1 start bit
16 bits of sample
1 channel bit (R)
2 stop bits

40 bits total for a stereo sample

All 40 of the bits must be transmitted in one sample time. For a
50-KHz sampling frequency, this yields a 2-MHz bit rate. The
bit-clock comes from a plug-in crystal oscillator on the I/0
paddle card. The frequency of this oscillator is 80 times the
desired audio sampling frequency (twice the bit rate). If
connection to external digital audio equipment is desired, the
oscillator can be left out and the board will accept an external
clock via a card-edge BNC connector.

Manchester encoding allows audio data to be transmitted along
with the bit-clock down a single serial line to the console. At
the console end, the serial data stream is decoded and the clock
is extracted. The least significant 12 bits of a stereo sample (the
right channel) are sent to a 12-bit digital-to-analog converter
(DAC). The analog output from the DAC is amplified and sent
to a small speaker in the console. A connector on the console is
also provided to tap the converted analog audio signal.

Disk Controller
The 3600 disk controller is closely linked via the L bus to the
3600 processor. With this controller, any storage module drive
(SMD) unit can be attached to the 3600. The controller has
error correction circuitry that allows the correction of burst
errors of up to 11 consecutive bits on a disk page. The disk
controller hardware handles rotational position sensing and

110

Symbolics 3600 Technical Summary Hardware: 1I/O Systems

Figure 27. Basic digital audio
output system.

3600 Processor

| | Lbus
A} ,‘;/32
3600 > Buffer
microtask Tao |- == Eagd_l.e_bgald_ N
wake-up Y
signal - Shift register
> Crystal oscillator
11
Y

Manchester encoder

Control logic -

- 1
1

High-fidelity ------=--= :_2;2—_ plipeepdonfiopdiujiiuniiiis

audio box

-O

External
clock input

3600 console

Copyright © 1983 Symbolics, Inc.

Symbolics 3600 Technical Summary Hardware: 1/0 Systems

overlapped seeks. To simplify the controller logic, memory
accesses and disk header comparisons are performed in processor
microcode, as a separate microtask. This microcode assist allows
page-chaining so that more than one page can be transferred in a
single request.

112

Symbolics 3600 Technical Summary Hardware: Specifications

3600 Hardware: Packaging
and Specifications

Processor and Console Cabinets
The basic 3600 system is packaged in two cabinets: a processor
cabinet and a console:cabinet. The processor cabinet contains
the processor, FEP, and memory boards. In addition, it holds a
cartridge tape drive, a disk drive, and power supplies.

The console cabinet is connected to the processor cabinet via a
cable up to 60 meters in length. The Ethernet transceiver is
mounted on a local network coaxial cable and must be within six
meters of the processor cabinet.

Additional cabinets for the color display, additional disks, tape
drives, and the MULTIBUS card cage are optional.

The 3600 processor uses Schottky TTL circuitry, with 10K and
100K ECL (emitter-coupled logic) along certain critical paths.

Reserved, color-coded slots are provided on the L bus backplane
for several boards:

A Data-path and arithmetic-logic-unit board (DP)

A Sequencer board (SQ)

A Front-end processor board (FEP)

A Instruction fetch unit and memory-controller board (IFU)

The rest of the backplane is undedicated, with seven free L bus
slots.? The input/output board can go into any undedicated slot.
Plugging a memory board into an undedicated slot sets the
address of that board. For diagnostic purposes, the FEP can
always tell which board is plugged into what slot; it can even tell
the serial number and ECO (engineering change order) level of
the board.

No internal cables are used in the 3600. All board-level
interconnections are accomplished through the backplane. A
16-meter external cable is provided with the standard system for
connecting the console to the 3600 processor cabinet. Longer
cables up to 60 meters are available as options.

9Future systems will have 14 free L bus slots.

113

Symbolics 3600 Technical Summary Hardware: Specifications

Figure 28. Front view of the
board layout on the backplane.
An additional cabinet is
provided for memory expansion
beyond that shown here.

>|> > >

e] A | A | A

o|6|o6]| o

EIE|E|E

>|lojlo|lo|o

ol=z|=Z|=2]|=2

ELLLI—

s|lo|o|o]|o

S |o|o|o|@ S

|l CS] C 1) fa
O|®|C|® | © 7] @

o lalalal a 8 >
ololo|lo] o ol a %&
=|E|E|E|E o lo ol ®
Clo|lo|lo| o = oS
o) > > >|=| € |25
oc|E|E|E|E|BIBIG|IS|® SIS
clolc|c|clE|E|IE|9]|E E13|s
Sslolol|lolole|2(2|0|8 Ol | ®
ololo|lolo|=|=Z|=2|=|LC Sln]|o
T | s|c|®|®

clclic|lcl|c

oleljejel.o

“— 13D la= | = | =

olalalal.

Ol|0O|O0|IO |0

AR B B B B
LfLjLyjryjLjLyjLyjL

Electrical Specifications

The processor requires 110 volts AC at 30 amperes and consumes
approximately 2000 watts. The console requires 110 volts AC at
three amperes. It consumes approximately 1100 watts. 60-Hz
operation is standard, while 50-Hz operation is available.

Four switching power supplies exist on a basic 3600 system: one
for the disk, two for the processor logic, and one for the
NanoFEP. All of the voltage regulators are embedded in the
power supplies.

114

Symbolics 3600 Technical Summary Hardware: Specifications

Environmental Specifications and Requirements
The 3600 operates reliably between the temperatures of 32 to 90
degrees Fahrenheit (0 to 25 degrees centigrade), with a relative
humidity of from 15 to 80% (noncondensing). The processor
dissipates 6800 BTUs: of heat per hour. A thermostat inside the
processor controls the speed of the cooling fans.

Physical Dimensions and Weights
The dimensions and weights of the 3600 hardware components
are as follows:

A Processor cabinet

A 172.5 cm (69 in) high

X 56.25 cm (22.5 in) wide

7 80 cm (32 in) deep

R 387 kg (850 Ibs) in weight
A Console

2 38 cm (15.2in) high

N 425 cm (17 in) wide

R 29.2 cm (11.68 in) deep

R 18.2 kg (40 1bs) in weight
A Optional color display

A 44 cm (17.6 in) high

R 44 cm (17.6 in) wide

R 48 cm (19.2 in) deep

R 46 kg (101 Ibs) in weight

115

Symbolics 3600 Technical Summary Hardware: Peripherals

3600 Hardware: Peripherals

The 3600 is designed to support three classes of peripherals:
AL bus

Disks, color display system, Ethernet interface
A MULTIBUS

Tape drives, modem
A FEP

Laser printer, serial lines
L bus peripherals are accessed very rapidly, while the Ethernet
peripherals are serviced the slowest. This section discusses each
class of peripheral in turn.

Disk Systems
The 3600 uses a 169-Mbyte unformatted fixed-media Winchester
disk drive as its basic paging and local storage system. The
average positioning time is 27 ms. The maximum seek time of
the disk is 55 ms. The transfer rate is 1.012-Mbytes/sec. The
disk is mounted inside the processor cabinet.

As an option, fast-access DD470 fixed-media Winchester disks
can be added to the basic system. These disks hold 474 Mbytes
unformatted. DD470s have an average positioning time of 18
ms, a maximum seek time of 35 ms, with a transfer rate of 1.859
Mbytes/sec. One drive will also fit in the processor cabinet,
replacing the standard disk.

The maximum disk load on a 3600 with a single input/output
board is 1.896 Gbytes (four 474-Mbyte drives). With another
input/output board (one L bus slot), this capacity can be
doubled. Extra disk drives are housed in separate cabinets.

Applications that require removable disk media can be configured
with a free-standing 300-Mbyte storage module drive.

Ethernet Interface
The 3600 processor and the network controller (part of the
input/output board) work closely to provide support for the full
10-Mbit/sec Ethernet protocol. The processor and network
controller communicate via the L bus. The network controller
also receives a microtask assist from the processor.

Ethernet is a local area network transport mechanism consisting

17

Symbolics 3600 Technical Summary Hardware: Peripherals

Figure 29. The 169-Mbyte
disk drive.

of a packet bus that uses statistical arbitration. The physical
connection between Ethernet nodes is a standard single-strand
coaxial cable, tapped by a transceiver. Up to 100 Ethernet
stations can be interconnected on a 1000-meter cable. For
compatibility with existing installations, Chaosnet local area
network support is available via a gateway processor.

Color Display System
The CD1000 color display system option is a controller and
memory system that provides flexible, programmable,
high-resolution color graphics.

The color display system is designed to support graphics
applications in the fields of computer-aided-design (CAD), image
processing, and animation.

118

Symbolics 3600 Technical Summary Hardware: Peripherals

Figure 30. The 474-Mbyte
disk drive.

The minimum configuration of this 1280 x 1024 pixel display
consists of a color controller board, one color memory (CMEM)
board, and a video paddle card. The paddle card contains all the
connectors and electrical interface hardware. This configuration
gives the user two million 8-bit pixels. Ten bits control the
output of each color gun — red (R), green (G), and blue (B) —
allowing the potential for one billion colors. Three coaxial cables
allow operation of the CD1000 up to 16 meters from the
processor.

Standard features of the CD1000 system include:

A 64 x 64 x 2 writable nondestructive cursor overlay (the 2
bits determine the: choice of color map)

A 2,097,152 pixels stored in memory at all pixel depths

A Microcoded sync generator with writable control store

119

Symbolics 3600 Technical Summary Hardware: Peripherals

(allows programming of any video format up to 1280 x
1024)

A Two color map modes
2 Pseudocolor: 256 colors (eight bits)
2 Full color: 256 levels each of RGB (16.8 million colors

provided by 24 bits)

A Zoom by integer ratios independently in the x and y
dimensions, by up to 255

A Pan to the pixel independently in x and y

A Line index table that maps data in the color memory into a
logical raster, each line of which can be independently
panned and zoomed by line-attribute fields in the table

» Color memory mapped directly into 3600 address space

A Pixel and plane write-mask registers mask off pixels and/or
planes during memory operations

A Pixel writing at up to 1.7 Gbits/sec in Fill addressing mode

Color Memory Addressing Modes
The memory topology of the 3600 color frame buffers provides
for four addressing modes:
A Pixel mode
Accesses one pixel per 32-bit word.
A Packed mode
Bytes of four or two adjacent pixels are packed into one 32-bit
word.
A Plane mode
Accesses one plane of 32 adjacent pixels.
A Fill mode
Fills 32 adjacent pixels with the value of the color-fill register
in one memory-write cycle. It reads memory like the Plane
mode under control of a special field in the control register.
Each of the four modes can be seen as a different topological
mapping of the physical bits in the color memory into a virtual
block of address space. In other words, the same physical
memory is mapped into four different blocks of the machine’s
virtual memory. Hence, selection of a color addressing mode is
determined by the address.

In Plane addressing mode, the color memory is addressed as a
stack of 32 planes. The first eight planes are red, the next eight

120

Symbolics 3600 Technical Summary Hardware: Peripherals

are green, the next eight are blue, and the last eight are overlay
planes. A 32-bit word at location 0 is mapped into the first 32
bits of the first red plane, along the x-axis (see figure 31). Plane
mode is useful in CAD applications where multiple layers of an
image are superimposed, such as in VLSI design.

In Pixel addressing mode, memory is viewed as a
three-dimensional block of cells. A 32-bit word at location 0 is
mapped along the z-axis of the block, with eight bits of red, eight
bits of green, eight bits of blue, and eight bits of overlay (see
figure 32). Pixel mode is useful for image processing and other
applications where the pixel is the important addressable unit.

In Packed addressing mode, memory is also viewed as a block,
but in a different configuration. A 32-bit word at location 0 is
mapped into eight bits of color at x-location 0, eight bits of color
at x-location 1, eight bits of color at x-location 2, and eight bits
of color at x-location 3 (see figure 33). Packed mode operation
is especially efficient with an eight-bit-deep color memory, since
one write operation covers four full-color pixels.

In Fill addressing mode, special control logic performs a two-stage
mapping operation using the color parameter register as a data
source. The color parameter register is a single 32-bit register
which stores a color (see figure 34). Subsequent memory writes
use data words as collections of write-enable bits. The color that
is written into an enabled pixel is that stored in the color
parameter register. Pixels that are not enabled are not altered.
In Fill mode, graphic effects such as half-tones, stipple patterns,
and characters can be written extremely quickly. Since the 32-bit
write operation is mapped through the control card with up to a
32-bit color value, one memory write in Fill mode generates
effectively 32 x 32 (1024) bits in a single 600-ns write cycle.
Hence, graphically intensive operations, such as area fills, can be
carried out at a rate of 1.7 Gbits/sec.

Color Display System Options

The standard color display system is supplied with eight bits per
pixel. One, two, or three additional color memory cards can be
plugged in for depth expansion to 16, 24, or 32 bits per pixel,
respectively.

121

Symbolics 3600 Technical Summary Hardware: Peripherals

Figure 31. Color memory
topology in the Plane addressing
mode.

Figure 32. Color memory
topology in the Pixel addressing

mode.
G-
R 32 planes total
N
. @\,bo R
& R
R
The first 8 planes are for
R red, the next 8 for green,
R and so on.
Plane mode R After the last word on
Each memory write R the f!rst plane is written,
alters a single-word ‘ the first word on the secc;
across a single color = ond plane is written, an
plane. Each color N so on.
(plus overlay) has Addresses -
eight planes
allocated to it.
O 0
g 5
- G
AA) R
Address OROy 1[2[3] n

|nd -

Pixel mode

Each memory write causes a single
32-bit deep pixel to be altered.

122

Symbolics 3600 Technical Summary Hardware: Peripherals

Figure 33. Color memory
topology in the Packed
addressing mode.

Figure 34. Color memory
topology in the Fill addressing

mode.
e ‘ [®)
=
G
AR R~
\ N)
o\ \N "\ —
Addresses .
Packed mode
A single 32-bit memory write
updates four pixels in one color.

Color memory write operation

31 0 . : ,
Ols[G[R] @The color parameter register is written.

=
B

G
| R

/' —32 fbits———q
31l 0 —
B lE

Fill mode

A color

parameter register Data word
Is set. Subsequent contains
memory writes the write-
treat the data word enable

as a write-enable mask. bits.

123

Symbolics 3600 Technical Summary Hardware: Peripherals

Tape Drives
Symbolics supplies several MULTIBUS-compatible tape drives for
backup, distribution, and compatibility with other systems.

Figure 35. The TD20
cartridge tape drive.

Each 3600 site 1s supplied with an embedded TD20 20-Mbyte,
quarter-inch cartridge tape drive (see figure 35) for receiving
software updates from Symbolics. The TD20 can also be used
for backup of the disk. Each cartridge holds up to 20 Mbytes of
data.

As an option, a 3600 configuration can include a TD80 tape
drive (see figure 36). The TD80 is an industry-standard 9-track,
1600 bpi, 25 ips, half-inch tape drive. The TD80 also performs
in a 3200 bpi, 90 ips streaming mode. The TD80 may be housed
in a standalone cabinet or in a DD470 disk drive cabinet. The
TD80 and other tape drives can be attached to the 3600 via the
MULTIBUS interface.

Laser Graphics Printer
The Symbolics LGP-1 laser graphics printer is a table-top
laser-beam printer with an MC68000-based controller. The
LGP-1 is designed to produce high-quality graphic documents on
standard 8.5 x 11 inch size paper.

The LGP-1 combines precision optics, semiconductor laser beam
recording, and electrophotographic copier technology to produce
documents and graphics at a resolution of 240 dots/inch

124

Symbolics 3600 Technical Summary Hardware: Peripherals

Figure 36. The TD80
streaming tape drive.

horizontal by 240 dots/inch vertical. This document was
produced from masters printed on a Symbolics LGP-1.

Features of the LGP-1 include:

A Nonimpact, quiet printing

A Variable-width characters, multiple fonts, and multiple font
sizes

A Portrait- and landscape-aspect printing

A Tektronix compatibility mode

2 9.8 letter-sized pages per minute

A Screen images from bit-mapped displays

A Minimum processing time on host computer

A Power-saving automatic shutoff

A Dynamic font loading

A Support for Troff and TEX formatter output

A Industry-standard interfaces (RS-232C asynchronous and
DEC DR11-C compatible parallel)

The LGP-1’s controller is driven by an MC68000 microprocessor
with 1 Mbyte of memory in the basic configuration. Standard
interfaces can be connected to the LGP-1. These include (with
their transfer rates):

A The RS-232C serial line interface

125

Symbolics 3600 Technical Summary Hardware: Peripherals

Up to 19,200 bps
A The 8-bit parallel interface compatible with the 3600

Up to 1 Mbyte/sec
A The 16-bit parallel interface compatible with DEC DR-11C

Up to 2 Mbytes/sec
The supplied software of the LGP-1 allows it to work as a line
printer or graphics printer. The unit also runs standalone
diagnostics and prints test patterns. In graphics mode, the LGP-1
interprets commands to load fonts, draw characters from fonts,
and draw lines, rectangles, and pixel arrays. Commands to
magnify images are also available. "Filter" programs, to convert
information from one graphic format to another, are not needed.

The LGP-1 Laser Graphics Printer accepts and prints data
prepared for an ASCII printer, and the Tektronix graphic display.
A native-mode format is available for maximum flexibility.

For use with UNIX systems, four TROFF fonts (regular, italic,
bold, and mathematical symbols) are supplied, along with line
printer fonts (normal and rotated), and all the standard
Computer Modern fonts often used with the TEX formatter. In
addition, the font editor supplied as part of the 3600 software
package allows users to create fonts.

126

Symbolics 3600 Technical Summary Technical Communication

3600 Technical
Communication

Symbolics provides technical information in many forms,
including printed manuals, training courses, and online
documentation. Key components of the 3600 technical
communication package are:

A Introduction to Lisp and Lisp Machine Programming
Experienced programmers with no Lisp experience learn to
program and operate the Lisp Machine in this two-week
intensive course. Each student develops a program project,
using many advanced features of the Symbolics system.
Students also learn to read and modify large programs.
Examples are drawn from actual Lisp Machine system code.

A Concepts and Techniques documents
These documents present an overview of a topic for
experienced programmers who are new to the Lisp Machine.
It draws on the rich contextual background of these users in
presenting both conceptual architecture and specific features.
From these documents, users derive a broad enough
understanding to feel comfortable poking around on the
machine, trying things out and learning on their own. An
example is Zmail Concepts and Techniques.

A Advanced Programming Seminars
Lisp Machine programmers learn advanced concepts and
techniques from seminars given by senior members of the
Symbolics technical staff. These seminars vary according to
the needs of the students. In the past they have covered such
topics as program design, object-oriented programming, and
networks.

R Reference manuals
These documents are organized by subsystem, program, or
other software or hardware entity. They cover a given topic
in complete detail. The presentation of the material reflects
the organization of the code. Examples are the Lisp Machine
Manual and Signalling and Handling Conditions.

A Survey documents
These documents are summary collections of information from
many sources. Each survey addresses one topic or function in
detail, but it draws source material from many subsystems
where possible and practical. Examples are the Lisp Machine
Summary and Program Development Help Facilities.

127

Symbolics 3600 Technical Summary Technical Communication

2 Update documents
These documents present new features or changes to existing
software based on new releases of the system software. An
example is Release 4.0 Release Notes.
A Procedural manuals
These documents give step-by-step instructions for
accomplishing specific tasks. The level of complexity varies,
depending on the topic. An example is the Software
Installation Guide.
A Hardware documentation
Hardware schematics describe the following parts of the 3600
system:
» Datapath (DP) (the processor)
A Sequencer (SQ) board
7 Front-end processor (FEP) board
R Memory controller (MC) board
» Input/output board (I0B)
A Online documentation
Standard online documentation facilities are built into the
software system. These include the following:
5 The status line indicates what state the machine is in.
7 The mouse documentation line describes the effect of
pressing the mouse buttons in a given context.
X Help with a particular application or context is accessible
by pressing the HELP key on the keyboard.
A Summary documentation and function argument lists are
available on single-keystroke commands.

128

Symbolics 3600 Technical Summary Glossary

Glossary

A Address Space
The programs and data used in computers are stored in
addressable memory locations. The size of the total available
memory is called the address space of the computer. This size
can be expressed as the number of bits it takes to hold the
largest address. The 28-bit virtual address space of the 3600
refers to a total of 256 million addresses. Each addressable
unit (word) holds 36 bits.

A Areas
Storage in the 3600 :memory is divided into areas. Areas are
intended to give users control over the paging behavior of their
programs, Areas can also be used to "fence off” a portion of
memory from the garbage-collector.

A bitblt
This abbreviation stands for "bit boundary block transfer"
(also known as RasterOp on some systems). On the 3600,
bitblt is a fast microcoded array operation that can be used to
move a rectangular portion of the screen from one place to
another. bitblt can also perform Boolean operations and
repetitions. It is used for painting characters, drawing lines,
scrolling an image across a window, moving an image onto the
screen from somewhere in memory, and saving the undisplayed
portion of an image: (for example, a corner of a window
covered up by another window).

A Bit-mapped display
This is a display in which one memory cell is allocated for
each pixel on the screen. Writing a 1 into a memory cell
causes the display to generate a dot on the screen. Images can
be constructed on the screen by writing into the appropriate
group of memory cells.

A cdr-coding
This is a technique used in the hardware for making the
storage of lists more compact. In every memory word, two
bits are used to indicate whether the word following a
preceding word is one of the following:
X Not part of a listi(cdr-nil)
A The address of the next word in a list (cdr-normal)
R The address of the second word in a list (cdr-next)

131

Symbolics 3600 Technical Summary Glossary

A Chaosnet
The Chaosnet is a baseband packet-switched local area
network, similar to the Ethernet. It is used for communication
between computer systems and peripherals, and their users. It
was originally developed at M.I.T., and it was used by
Symbolics to interconnect LM-2 computers. It is typically run
at a slower rate than the 10-Mbit/sec Ethernet.

A Common Lisp
This is a dialect of Lisp developed by a committee of Lisp
implementors from 1981 to 1983 for the purpose of defining a
standard for portable software. Common Lisp is a lexically
scoped, upward-compatible extension of the Maclisp dialect.
(Maclisp was developed at M.I.T.) Symbolics Common Lisp is
a compatible superset dialect of Common Lisp developed by
Symbolics.

X Compiler
A compiler translates a source language into a lower-level
form, directly executable by the processor hardware.
Compilers usually perform several passes over the program text.
During these passes, the code is transformed in various ways to
make it more efficient.

A Compile time
This refers to the time when a program is compiled, which is
often different from the time when it is executed or run. (See
Run time.)

A Data-type checking
On the 3600, data elements are classified as instances of
specific types. Data types include integers, floating-point
numbers, character strings, flavor instances, and others. The
3600 hardware performs automatic run-time data-type checking
as a part of instruction execution. This ensures that the data
types match the instructions. In this way, erroneous operations
such as "add a number to a character string” are avoided.

A Digital-to-analog converter
A digital-to-analog converter (DAC) changes a stream of
individual digital numbers or samples into a continuous analog
voltage signal. For high-fidelity sound, this conversion is
carried out at twice the maximum audio frequency desired.

132

Symbolics 3600 Technical Summary Glossary

After conversion, the analog signal emerging from the DAC is
sent to a filter, amplifier, and loudspeaker to produce sound.

A Ethernet
The Ethernet is a:baseband packet-switched local area network
for communication between computer systems, peripherals, and
their users. The physical structure of the Ethernet is that of a
coaxial cable connecting all the nodes on the network. The
Ethernet is used to interconnect individual 3600 systems and
peripherals into a network.

A FEP
The FEP (front-end processor) is an MC68000 microprocessor
attached to the 3600 processor. The FEP boots the 3600,
manages error-logging, runs diagnostics, and handles
MULTIBUS inputy/output.

A Flavors
The Flavor System is Symbolics’ implementation of the
language features that support object-oriented programming.
Flavors are the abstract types; methods are the generic
operators. The objects are flavor instances that you
manipulate by sending messages, which are requests for specific
instances of an operator. A feature of the Flavor System is
that flavors can inherit instance variables and methods from
other flavors in a nonhierarchical way.

A Frame buffer
The frame buffer or bir map is a two-dimensional memory
array with one memory cell for each pixel on the screen. On
the 3600 color display, each memory call contains up to 32
bits. (See Bit-mapped display.)

A Garbage collection
Garbage collection iis a set of techniques for recovering parts of
the address space that have been used to represent objects that
are no longer accessible. Once the memory is recovered, it can
be used again to represent new objects.

A Generic algorithms
These are algorithms which can work on any object that obeys
a particular protocol, no matter how the object performs the
algorithm. For example, a generic Print algorithm works with
several kinds of objects, such as integers, floating-point
numbers, and arrays.

133

Symbolics 3600 Technical Summary Glossary

A Generic file-system access
This means that the 3600 supports access to several different
file systems on different operating systems and computers.
They are all accessed via a uniform, generic protocol.

X Interpreter
An interpreter is a program translator that executes individual
lines of source code in a single pass, usually in an interactive
mode.

A Interrupt
An interrupt is an event detected by the hardware that
changes the normal sequence of program execution.

A Laser graphics printer
The Symbolics LGP-1 is a laser graphics printer. This means
that it uses a computer-controlled laser to record an image on
a drum inside the printer. Standard photocopier technology is
used to copy the image from the drum onto a piece of paper.

AL bus
The L bus is the high-speed data path which interconnects the
3600 processor to the disk controller, the network controller,
the console, the FEP, and main memory.

ALIL
LIL is the systems programming language for the front-end
processor and the 3600 console, which are both based on the
MC68000 microprocessor. LIL has a Lisp-like syntax, with
many operations that are close to the instruction sets of
processors like the MC68000.

A LM-2
The LM-2 is another Lisp Machine made by Symbolics.
Introduced in 1981, it is the predecessor of the Symbolics 3600.

A Macroinstruction
The Lisp compiler translates Lisp source code into a sequence
of macroinstructions — machine-language instructions which
are directly executed by the machine. These are distinguished
from microinstructions. (See Microinstruction.)

A Message-passing
See the Flavor System.

A Microcode
The microcode is the low-level software that controls the

134

Symbolics 3600 Technical Summary Glossary

internal data paths within the processor to execute
macroinstructions. For example, a multiply macroinstruction
causes the processor to execute a sequence of microinstructions
which fetch the operands, perform the multiplication, and store
the results in the appropriate place.

A Microinstruction
A microinstruction controls the internal datapaths of the
processor. A microinstruction is stored in a microword. (See
Microcode.) On the 3600, a microinstruction is 112 bits wide.
Microinstructions require the interval of one clock cycle
(microcycle) for their execution.

R Mouse
The mouse is a hand-held pointing device attached to the 3600
system. It has three buttons on top of it and a tracker ball
underneath it. When you move the mouse across a table top,
the cursor on the bit-mapped display screen follows the mouse’s
movements.

A NanoFEP
The NanoFEP is a tiny microcomputer that serves as a
front-end processor to the MC68000-based front-end processor
(FEP). The primary tasks of the NanoFEP are bootstrap
loading the FEP and monitoring the physical environment of
the processor cabinet.

A Object-oriented programming
See the Flavor System.

A Packages
The package system is a means of identification for code
modules. The main goal of the package system is avoiding
conflicts between the names of functions and other Lisp
objects written by different people for different purposes.
Package names prefixed to Zetalisp functions allow functions
with the same name to coexist in a single environment, without
ambiguity or conflict.

A Page
A page is the unit of memory used for the purposes of virtual
memory management. On the 3600, a page is 256 36-bit
words.

A Pixel

135

Symbolics 3600 Technical Summary Glossary

This stands for picture element, a point on a bit-mapped
display screen.

A Pointer
A pointer is a reference to a word in virtual memory.

A Run time
This refers to the time when a program is executed or run, in
contrast to compile time. (See Compile time.)

A Stack
The stack is an area of memory reserved for temporary
storage. A stack adheres to a last-in, first-out protocol. As
objects are "pushed” onto the stack, the stack pointer is
incremented. As objects are "popped"” from the stack, the
stack pointer is decremented. In the 3600, special high-speed
memories are reserved as stack buffers.

A Stack groups
Stack groups are Lisp objects which represent a computation
and its internal state, including the Lisp stack. The stack
group holds state information, including the local environment,
special variables, and dynamic storage associated with a
computation.

A Streams
Streams are a kind of "software channel" used to implement
input and output in Zetalisp. Many streams are implemented
with flavors.

A Symbolics Common Lisp
This is a compatible superset of the Common Lisp standard,
currently under development at Symbolics.

A Virtual memory
From the programmer’s viewpoint, the virtual memory space is
the space in which programs and data are contained. From
the system’s viewpoint, the virtual memory space is a collection
of pages of information, some of which reside in physical
memory and some of which reside on disk. Since memory can
be read or written only when it is resident in physical memory,
the 3600 hardware automatically swaps between physical
memory and the pages on the paging disk.

A Winchester disk
A Winchester disk is a mass-storage medium consisting of one

136

Symbolics 3600 Technical Summary Glossary

or more spinning magnetic platters and a low-mass
recording/reproducing head. The disk medium is sealed to
keep out dust, and therefore, it is not removable from the
drive.

A Zetalisp
Zetalisp is a dialect of Lisp used on the 3600. It was originally
based on the Maclisp dialect developed at M.I.T., but includes
many extensions useful in the Lisp Machine environment.

A Zmacs
Zmacs is the text and program editor on the 3600. Itis a
real-time display-oriented editor. This means that the text
being edited is always visible, and commands are executed
immediately.

A Zmail
Zmail is an elaborate interactive system on the 3600 for
reading and sending mail.

137

Symbolics 3600 Technical Summary

Index

Actual file name 65
Address space 131

Areas 131

Arrays 31

Auto-dial Feature 7, 10,75

Backup facilities 63
Binding stack 84
Bit-mapped display 131
Bitblt 131

Block mode operations 101
Bootstrap loading 106

Cartridge tape drive 124
Catch/Throw 33
Cdr-coding 81, 131
Chaosnet 132

Character set 34

Color display system 118
Common Lisp 46, 132, 136
Compile time 132
Compiler 132

Console cabinet 113
Control stack 84
Control structures 32
Converse 73

Data stack 84

Data types 82

Data-type checking 132
Deletion, hard 25

Deletion, soft 25

Diagnostics 107

Digital audio output system 109
Digital-to-analog converter 132
Direct memory access 101

Disk controller 110

Display Debugger 21

Ethernet 117, 133

139

FED 25

FEP 101, 133

FEP file system 108
File system editor 25
Fill mode 121

Filter 71

Flavors 32

Font editor 25
Formatted output 35
FORTRAN 77 15, 49
Frame buffer 133
Frames 84
Front-end processor 105

Garbage collection 133
Generic algorithms 133
Generic file system 134, 64
Generic functions 80
Gray plane 25

Hard fault 97
Hardware error signals 106

IEEE Floating-point 31
Immediate number word format 80
Input/output streams 35
Inspector 21

Instantiation 39

Instruction cache 93

Instruction fetch unit 89
Instruction formats 85

Instruction set 85

Interlisp Compatibility Package 47
Interpreter 134

Lbus 100, 134

Lexical scoping 51

LGP-1 laser graphics printer 134, 126
LIL 15,47, 50, 67, 106, 134

Lisp Machine File System 62

ILM-2 4,134

Logical file name 65

Symbolics 3600 Technical Summary

Loop iteration macro 33

Macroinstruction 134

Macros 45

MACSYMA 52

Manchester encoding 110
Manchester-encoding logic 109
Map Cache 97

Marking text 16
Message-passing 134
Message-passing programming 38
Method 32

Microcode 89, 134
Microinstruction 135
Microtasking 89

MMPT 96

Mouse 10, 135

MULTIBUS 67, 105
Multiprocessing 34

NanoFEP 108, 114, 135
Numerical types 31

Object-oriented programming 38

Package system 36, 135
Page 135

Page tag bit 99
Page Tags 98
Paging policy 65
Patch system 29
Pathname 65
Peek 23

PHT 96

PHTC 96, 97
Plane mode 121
Planes 32

Real-time interrupts 106
Real-time process 67, 106
Remote login 75

Run-time data-type checking 79

Scheduler 66
Screen editor 56
Scrolling 61
Serial lines 105
Site file 65

140

SMPT 97

Sort function 36

Spy bus 107

Stack buffer 84

Stack buffers 93

Stack group 84

Stack groups 34, 136
Status line 58

Storage module drive 110
Streams 34, 35, 64
Structures 32

Supdup 67

Symbol processing 5
Symbolics Auto-dial Feature 10
System 28

System declaration 28

Tagged pointer word format 80
Tape drive 124
Telnet 67

UNIX 64, 65
Unwind/protect 33

VAX/VMS 64

Virtual memory 136

Virtual memory management 65
VPN 97

Winchester disk 136
Window frame 56
Window pane 56
Window system 55

Zetalisp 5, 15, 28, 29, 31, 32, 33, 34, 35, 137

Zmacs 13, 14, 15, 17, 137
Zmail 69, 71, 137

3600 Technical Summary
990098

Design: Schafer/La Casse
Photography: Thayer & DeMaio
Photograph Page 100: Robert Stone

Typesetting: Cover — Litho Composition Co.

Printing: Henry Sawyer Co.

	00001
	00002
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	xBack

